CONCEPTS OF SPACE AND TIME IN EINSTEIN’S
RELATIVITY

Einstein’s Postulates of Relativity

According to the principle of Galilean Relativity, all mechanical laws remain symmetrical in
all inertial frames and so all mechanical phenomena appear the same in all inertial frames.
Einstein was convinced for general reasons that all physical laws includi e laws of
electromagnetism must be equally valid in all inertial frames of refere So, inertial
frames are equally permissible to all physical laws and principles erefere, they are
equivalent (Principle of equivalence). Einstein raised this concep H f a postulate
in his Relativity Theory, which states- “All physical laws ] of nature are

identical in all inertial frames of reference”—(Einst elatiyity Principle). This

postulate elevates the Galileo’s Relativity Principle \ | anics to the status of

general law for the entire physics.
This above postulate therefore inhere jects, the need of any absolute or

preferred/privileged frame like ether from the paintof view of the applicability of natural

agnetism are the laws of nature and they are

postulate very mi ater on, he put forward this consequence in the form of another
postulate of hi

Einstein’s Relativity Principle still remains as a Postulate- Why?

The Relativity Principle has been verified experimentally to a very high degree of accuracy,
but still it has been kept as a postulate, not as a law due to two reasons. All experimental
instruments have their inherent limitations, so more sophisticated instruments invented in

future may show deviation or defect of the principle. Again, there may be some undiscovered
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phenomena in nature which may not be within the realm of the principle and so we are not in

a position to accept beforehand the principle for these phenomena.
Underlying meaning of the Principle of Einstein’s Relativity:

According to the principle, all physical laws remain symmetrical in all inertial frames and so
the phenomena appear the same in all inertial frames. If a piece of equipment in one inertial
frame with a certain kind of machinery in it, the same machinery will work in another inertial

frame in the way same as that in the former frame and therefore the c ion of an

experiment in both the frames is the same. That is the reason why we ¢

inertial frame from another one.
Space and time (from wiki)

The idea of time and space has occupied human thou thQus of years. These things

at first sight seem simple and easy to grasp, because theyaare Clese to everyday experience.

Everything exists in time and space, so they appear conceptions. However, what is

familiar is not necessarily understood. On Cleser &amination, time and space are not so

easily grasped. The dictionary is notenuchyhelp . Time is defined as a "a period,” and a

period is defined as "time." This s very far! In reality, the nature of time and

space is quite a complex philosophi blem.

. In fact, only material fluids can flow. Men and women

be

humans or even animals. Organisms often have a kind of "internal clock," like plants which

clearly distingui n past and future. A sense of time is, however, not unique to

turn one e day and another at night. Time is an objective expression of the
changi matter. It is the way we express an actual process that exists in the
ph . Time is thus just an expression of the fact that all matter exists in a state of

constan nge. It is the destiny and necessity of all material things to change into something

other than what they are and so time is inseparable from matter.

A sense of rhythm underlies everything: the heart-beat of a human, the rhythms of speech, the
movement of the stars and planets, the rise and fall of the tides, the alternations of the
seasons. These are deeply engraved upon the human consciousness, not as arbitrary

imaginings, but as real phenomena expressing a profound truth about the universe. Time is a
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way of expressing change of state and motion which are inseparable features of matter in all

its forms.

Space is the "otherness" of matter, to use Hegel’s terminology, whereas time is the process
whereby matter (and energy, which is the same thing) constantly changes into something

other than what it is.

Space can also express change, as change of position. Matter exists and moves thgough space

expressing the same fundamental property of matter—change.

What about the concept of Space and Time i% ’s Relativity
It was Einstein’s conviction that Physical laws e favariant and the speed of light in

vacuum must be same equal to c in all frames

d"happen only at the cost of the
Newtonian concept of absolute space and ‘absol e. So, Einstein reformulated the

transformation equations for space ang tine coor es in such a way that they always yield

and time as two relative concepts.

through spac es travel at a finite and ever-constant speed, an observer from a

more distapt erceive an event as occurring later in time; however, the event is

at the same instant in time. Thus, ‘time’ is dependent on space.

of his mathematical study of electromagnetism. They derived the same set of
equations from two different perspectives, so, to give due honour to both of them, the new

transformation equations are called Lorentz-Einstein transformation equations.

Lorentz-Einstein Transformation Equations:

The postulate of Relativity Theory about the speed constancy of light in vacuum demands a

new set of transformation equations other than that Galilean type, because those
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transformation demands that the speed never be an invariant. The new transformation
equations must respect both the postulates of Einstein’s Relativity and therefore they must

satisfy the following four conditions-

1. The motion of a body in a straight line in one inertial frame S must be observed

unaffected from another inertial frame S’ moving with uniform velocity V relative to

frame S.
2. If S’ frame is moving with uniform velocity V relative to frame S, frame ill have a

uniform velocity —V relative to frame .

The transformation themselves must satisty the Einstein’s Print' xxvity.

4. The speed of light is the same in all inertial frames.

The first three conditions are beautifully satisfied by Galilgan, transfermation equations. So,
the form of the new set of transformation equations sho r& fopm as below

\\
Frame 5 Y Frame g’

— =V

z Z

In the case where the S’(x’,y',z’,t') inertial frame is moving with uniform speed V along

+ve X -direction w. r. to S(x, y,z,t) inertial frame and during the motion, the X' -axis

coincides the X -axis, and Y'-axis remains parallel to Y -axis and Z'-axis to Z -axis.

The first three conditions demand an inverse transformation of the following type
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......................... (2a)
Y =Y (2b)
Z=7 (2¢)

Using equation (1a) in (2a), we have

X =a[a(x-Vt)+Vt']

And then simplifying, we have

2
t’=o{t+(1 - J
(04

So, the new transformation equations will be
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(Using equations (4a) & (4d))
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Instead of the material particle, if we imagine a moving light particle, i. e. a photon, then by

the 41 condition, we have to write

c
I

c
I

o

Hence from equation (5), we have

Y \
And then simplifying, we have \&
a=x= ! b
’ V2
o &/

We have to choose + ve sign for a, because the trags equations in (4) only then
revert back to Galilean type in classical spe ) So, after putting the values
of a in the new transformation equations in we\calt readily obtain the Lorentz-Einstein

transformation equations as follows

In matrix form

X X
y 10 O y
z’ 0 01 O , (7a)
t' —aiz 0 0 « t
C
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Or, X =A%, wuv=234 . ...........[(»7b)

H 2
where X =X, X, =Y, X;=2& X, =tetc.and A isa4 x4 matrix.

And by substituting dashed coordinates by undashed ones and undashed by dashed and V by
-V in the above equations, we can easily derive the Inverse Lorentz-Einstein transformation

equations as follows

%
c?

~0 , hence the

Lorentz- Einstein transformation i rt back to Galilean type, i. e.

/=72 and t'=t

Concepts of Spacefan Einstein’s Relativity

The Lorentz-Eifistéip tranSformation equation for time shows that the time measurement of
one observer igh Speed comparable to the speed of light, there is mixed a little bit of
space as see e other and in the same way, in the space measurement of one observer, a

lit -w

when @ 2 moving with high speed.) And from it, we can logically come to the conclusion

oftime of the other is mixed up. (But we cannot realize this mixing of space and time

that for two different observers in two different frame moving with a relative velocity, both

space and time for them never be identical and they therefore are relative.
Space and time are relative concept in Einstein’s Relativity

In Einstein’s relativity, one of the postulates is that the speed of light in free space is constant.

If it would be so, time and space never remain as two absolute quantities irrespective of the
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motion of the observers. Let us assume that two events are occurred in S frame at two
different points P(x4,y,,2,) and Q(x,,v,, z,) at the instants t; & t, respectively. Applying
Lorentz-Einstein transformation equation for time, we can find out the time of occurrence of

theevents t'; & t', w.r.to S’ frame as follows.

vV 4
, b—an , tz—c_zxz
t, = ) t, = ——
V2 ’
1 - C2 -
It is clear from the above two expressions of t/ and t; that if the events Imultahgous in

S frame, but they are not appeared so from the S’ frame. The meani \ taneity is
not an absolute concept, but it’s a relative one.

Again, if someone is intending to measure the length of a

od, he has to calculate the

difference of the readings taken simultaneously for th

relative concept, the distance between the two di
and therefore distance is a relative concept.

The conclusion now we can draw is that tim space are both relative concept and

e the simultaneity is a

rent for different observer

absolute space and absolute time dmissible in Einstein’s relativity.
Simultaneity and order ¢

We suppose that twaffirecr plode simultaneously in S frame and these events both

take place on Xéaxis, at ,0,0,t,) and B(x,,0,0,t,) and t, =t/ =t. Another observer in
S’ frame js a servipg the events took place in S frame. The second observer has also
recordée, t itions and time of occurrence of the events as A'(x;,0,0,t)) and
B’ t)\from his own S’ frame corresponding to the events occurred at A(x,,0,0,t,)

and B(x,¥0,0,t,) respectively. If we suppose that S’ frame is moving with uniform speed V

along +X axis w.r. to the inertial frame S , then applying the Lorentz-Einstein

Transformation Equation for time coordinate, we have

Vv
H_Cﬁxi tz_cﬁxz
t = = and t,= =
-V Y

C C
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And it is seen clearly that t, =t" (not simultaneous) in S’ frame even though t, =t/ =t in S
frame and either t; <t/ or t, >t', i.e. there will be an order of event w.r. to the observer in S’

frame (i.e. any one of the two events will take place earlier than the other in S’ frame). Thus,
two events which are simultaneous in one inertial frame never be simultaneous w.r. to other
inertial frames and there is an order of events for the other frames. It means that simultaneity
never be an absolute concept as thought in Newtonian Mechanics (Galilean Relativity), but

a relative one.
Since simultaneity is relative, space never be absolute. Let us take the ex eo d. The
length of a rod can be determined correctly from the difference of th inatés, of the two

0
ends of the rod. Since, simultaneity is relative, the distance betw; H s of the rod
measured from one inertial frame never be the same as that fref a i al frame. Thus,

distance/space never be an absolute concept, as thought i

oniaMmMechanics (Galilean
Relativity), but a relative one.

Lorentz-Einstein transformation e %\&resent a rotation in
coordinate axes.

a
¥

¥
& \ /
-
zZ
Le% coordinates of a point be x, y & z w. r. to the frame S and those w. r. to the
frame

X',y & 7. Here frame S’ is the new position of the frame S after giving it a

-

rotation through an angle 8 about z axis. Thus

x' = x cosh + y sinf
y' = —x sinf + y cos@
z =z

In matrix form
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X cosf@ sin@ 0\ /x
y'|=|—-sinf cosf 0 (y)
z' 0 0 1/ \z

Or X' = A Xm, [Lm=123
(Summation is carried over repeated index according to Einstein’s summation convention)
Where A is a 3X3 matrix and
X1=x, X;=Y, & x3=2z
x1=x, x,=y & x3=z.

The Lorentz-Einstein transformation equations in (7a, 7b) are similar to ¢fosenfor rotation of
coordinate system and that is why, it is loosely said that the Lorentz{mste transformation

represents rotation in coordinate axes. %

Lorentz-Einstein transformation for an arbitrar %

The S’ (x’, y',2"). inertial frame is moving with Ui ity V along any arbitrary
C

direction w. r. to S(x, y, z, t) inertial frame. sition vector r for the point P

w.r. to the origin O of S frame and resolvinghit paralleland perpendicular to the direction of

+ OR

z

J—==7
S Frame A
R — g T B,
~H V-
- — % ; _,_,_,.,——"'f'__‘
T R W
7 7 — ’ rl =
- N =T
- — Q' i

We can express r and r, in terms of r as follows.
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n=ra>r=0.nn= (ﬂ) Voo (2a)

(n= % is the unit vector along the direction of propagation of the S’ frame, i.e. along V')

rl=r—r"=r—(ﬂ)V ...................... (2b)

v2

Again, w. r. to the origin O’ of S’ frame, the position vector of the point P is ' and resolving

it as above, we have

OP=00Q+0'T

Or

So, from equations (3), (

And hence y
% = r”_';_’; + rlzm + (r - (ﬂ) V) ................... (5a)

And by the Lorentz-Einstein transformation equation for time in equation (6d)

|4 Vr
a0 =3

- VZ V2 ................
J -z J ra

These two equations (5a) and (5b) are the Lorentz-Einstein transformation equations for

arbitrary direction of motion for S’ frame w. r. to S frame.
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Length Contraction

Y \'s
S Frame S' Frame
| ——— ¥ 4
1 u'=0 2
X x't x2 X'
0 }(1 0' )
7 @ \
The length of a rod placed at rest parallel to X’ axis in S’ frame is 0 observers
stationed at the origins of S frame and S’ frame. The observers at ahave to take the

readings of the two ends 1 and 2 on the X and X’ axes respectiv

For the observer in S’ frame, the length, called prope

LI — 12 N

And for the observer in S frame, the %
L=x*— x!
But here it should be %\ the rod is a moving one for the observer in S frame
and so he has to owmndhe Teadings x2 & x* of ends 1 and 2 simultaneously t! = t2,
otherwise the r change its position w. r. to the observer.
Now applyi %ﬁ\ntzfinstein transformation equation for space coordinate, it can be
readiby, s
V2
L = L 1 - C_Z

2
Since V <cg, fl — Z_z < 1, the above relation shows that L < L', i.e. the observed

length from S frame from which the rod is in motion is found to be contracted by the factor

2
fl - Z—Z But for a rod placed parallel to Y’ or Z’ axis, the length will not get contracted, as
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the coordinates corresponding to these two axes do not change during the motion of S’ frame.
So, we can conclude that the dimension of a moving object parallel to the direction of motion

only gets contracted w. r. to the stationary observer.

N NVAS
V=0 \

2
e Since in classical speed Iimit(g < 1), 1 —Z_z ~ 1, an he meaning
of which is that the space can be assumed as lute, physical quantity. It
indirectly reveals the exactness of Newtonian anigs ying the dynamics of

slowly moving bodies.

e |f possible, we suppose that the speed of\the i | to or greater than that of light

2
in free space w. r. to a stationery‘@bserver. Infjsuch case the factor /1 — Z—z would be
si

zero or imaginary, and so would be unphysical. The situation would be

physical only when t of the rod is less than c. So, nobody can move with
speed beyond c e t ight is the limiting speed (ultimate speed) for all in
Einstein’s re V&
Time dilatiofronyetardation of time

We suppo %ents occur at a point P (x’) in S’ inertial frame at the instant of time t';
& tf tRe events 1 and 2 as registered by the clock at rest in S” frame moving with

ethV w.r. to S inertial frame. So, the time interval for the observer in S’ frame is
AU =t) -t/
which is called the proper or intrinsic time interval.

If the time of occurrence of these events as registered by a clock at rest in S frame be t;
corresponding to event 1 and t, corresponding to the event 2, then the time interval for the

observer in S frame is At=t, -t
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Y ¥
S Frame S' Frame

— =V

; .
At t't

X T x" X'

/J /0| l

Using inverse Lorentz Einstein Transformation equation (8d) for time &\

\Y Vv
t+—=X t+5X
2Tz M b C2X1

Since V <c, fl—‘:—j < 1 the above on shows that At > At’, i.e. the time

interval registered by the clock fr framedis longer than that registered by another clock
moving along with S’ frame c /1 —Z—z. So, the time gets dilated in S frame,
whereas it gets reta@ .I.t. the observer in S frame.

S frame S' frame

: v
Obsever
t!

Ol 1O

The clock (in S’ frame) in motion with speed V w. 1. to the S frame goes slow down by the

2
factor /1 — :—2 that is to say a moving clock always goes slow w. r. to a stationary clock.

It can be said in a different way as every clock goes at its fastest rate when it is at rest w. r. to

the observer and it goes on slowing down with its speed relative to the observer.
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Experimental evidence for time dilation

Generally, the muons (Secondary Cosmic Ray (CR) Particles) are created at the top of the
atmosphere, as the highly energetic Primary CR particles enter the atmosphere and hit the
nuclei of air molecules. The muons just after creation start moving towards earth surface with
a very high speed comparable to speed of light. The intensity of muons was first measured at
the top of the mountain and then using an absorber with absorbing power equal to that of the
air column from top of the mountain to the sea level, and again the intensity of muons was
measured at the summit. The experimental results revealed that the intensity of muons at sea
level was much lower than that of at the top of the mountain. The only possible @xplanation
of the result is that these muons would be unstable particles and so they:'wouldyundergo
decay. The decay of muons can be described by the exponential law which, states

1) =1.e7",

Where 1, and I(t) are the intensities of muons at the beginning, t=0 beforetusing the absorber

and that of after time t=t when traversing through the absorber apd & is the mean life time.
Using the measured intensities 1, and I(t) and putting the thegretical value of t in the above

equation, the mean life time 7 for muons is found'@bkand. itis found to be equal to 7 =10"°s.
H_H
v=c
level and V is the speed of muons through air and itis approximately equal to the speed of
light ¢ in free space.

To calculate t, we take t = where K, is the,distance from top of the mountain to sea

According to Special Theorygef, Relativity, the life time zfor a moving muon w.r. to a
stationary frame would be longer than“that of 2 for a stationary muon (i.e. in the muon

frame) and

(1
7=_0

'V
o

5 -

To calculate 73, We take the energy of a cosmic ray muon equal to E =10° eV, which was

foundéxperimentally. From Einstein’s mass energy equivalence principle

m, | ¢2
u
E=m,c*= [ ]0 ,
1-V_
c2
v: E
since rest mass energy of muons is E, :(m#)0 ¢ =10"eV, so, [1-— :EO:O.l. Now,
c

considering the formula for time dilation, the mean life time of a stationary muon (in its own
frame) is calculated out as 7, =10°s =1us, which is shorter that the life time = for a moving
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muon w.r. to the laboratory frame. If it can be shown experimentally that the life time is of
the order of 1us, it will prove the validity of time dilation, otherwise this concept would have

to be discarded.

Experimental set-up to determination of the mean life time of muons

[ 1st Counter
& Lead Absorber
Coinci-_
dence 2nd Counter
Circuit O
O: — Filt
__  Filter
+ . O
Delayed Coincidence O CH 3rd Group of
Circuit OO0 O OO O OO Counters
——0 00000 000QRO RO
4th Group of
Counters

Anti-coincidence
Circuit

CR particles are made to pass one by ®ag thkough the 1% counter, lead absorber for absorbing
the secondary muons and 2" courtter beforésgntering the filter surrounded by the 3" group of
GM counters and the 4™ grouf of'eoumters,below the filter. Both the 1% and 2" counters are
connected to a coincidence citeuit Whereas the 3™ group of counters is connected with a
delayed coincidence circuit and the 4" group is connected with an anticoincidence circuit.
The reason for conmécting the4™group with an anticoincidence circuit is just to isolate the
muons, that undérgo disintegration inside the filter, from the other hard cosmic ray particles
passing through the 1§, 2" 8@ and 4" counters. In order to measure the life time of muons,
the 3™ graup of, GM. counters is connected with a delayed coincidence circuit. The circuit has
the chakactefistiofthat it is activated only when one of the counters in the 3 group in the
sur@tmdings ofilter receives pulse after a definite interval of time since the appearance of a
pulseyin‘the 18 and 2" counters. The coincidence delay time can be varied manually and that
delayeditime is known to the experimenters. If the delay time coincides with the life time of
muons, the electrons formed as a result of disintegrating of muons fall on one of the counters

of the 3" group at the right instant and in that case a (y—e) decay is registered. If the
delayed coincidence circuit is set for any other delayed time, the circuit will not be activated.
So, by tuning the delayed time, the (/J—e) decay processes can be registered. The mean life

time measured in this experiment gave conclusive evidence of time dilation as predicted by
Special Relativity.
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Concept of Four Vector in Minkowski’s spacetime

We consider an inertial frame S'(x’, y’, z', t") moving with uniform speed V along +ve X-axis

w.r. to inertial frame S(x, y, z, t). By Lorentz-Einstein Transformation Equations (LETE)-

X' =y =Vt) i,
Y = Y,
Z = e,

_1/
Where y = (1 —C—z) .
Employing LETE

r'? —c?t'? =x"? +y'2 + 22 — c%t'"?

=y2(x —Vt)? + y? + 2% —

= y? [(x2 + V?t? —2Vxth—

VZ
— y2 (1 _ 2 YZ( CZ)tZ + yZ + ZZ

x4 1S kept imaginary for the fact that space and time essentially different and the factor c
gives x, the same dimension as the other three space coordinates x;, x, & x5. With these

new coordinates x;, x,, x3 & x4, the above Lorentz invariant can be written as
x2+y2+z2—c?t?=x2+x2+x2+x2  (InSframe)

X% 4y 472 — 22 = x’% + x’% + x'% + x'2 (In S’ frame),
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And by eqgn (2), they are equal
X4+ X+ X+ = X X X (3)

So, x? + x2 + x% + x2 is again called a Lorentz invariant and x;, x,, x; & x, are called

the components of a true four dimensional position vector or position four vector x,,.

Xy = (X1, X2, X3, X4) = (X, Y, Z, (CL)eorriiiiiciciccce, 4)

x, 2 =xf + x5 + x5 +x§ =x*+y*+ 2% —c*t? is called the norm of jon four

vector x,,. By eqn (3), this norm x,,2 is a Lorentz invariant.

(Position vector in 3D space 7 = (x,v,z) = (x4, x5, x3) and 23 y2 422 =

x2 + x% + x2) %
Now we are going to formulate TEs for the compo %o our vector x,. For that,

we have to call the LETES from (1).

4 . . .V
= t—c—zx):nct =y(lct—lcc—2x)

S x'y =y —iBX1) i, (5d)
Or
x'y y 0 0 if\ /x1
x2y [ 01 0 o0]\x
2o [T 00 0 1 0 [ x fres (5e)
X' —iB 0 0 y/ \x
¥ = Qux; () = 1,2,34) e, (5f)

(using Einstein’s summation convention)

The above set of TEs (5a — 5d) are the TEs for the components of position four vector x,,.

Those TEs can be used to define a four vector.
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Definition of four vectors / world vector

If the components of any four dimensional vector A, = (4,, A,, A;, A,) are transformed

one inertial frame S(x, y, z, t) to another S’ (x', y’, z’, t") moving with uniform speed V along
+ve X-axis w.r. to inertial frame S(x,y, z, t) in the fashion similar to that for position four

vector x,, as described in the eqns in (5) is known as a four vector and world vector.

Thus, the TEs or transformation rules for the four vector A, must be

Or

A’i = 'QUA] (l,] = 1,2,3

Like the norm of position four vector x,, th ny four vector A, must also be

Lorentz invariant.

Proof:

AP =A%+ A, ! 2 (in S’ frame)
2

2+ A32 + YZ(A1 - iﬁA4)2

2—5 W+ 2iBAA,) + TR
B2A,° — 2iBA,A,) 5o

— BDAL’ +v2(1 — BDALS + A% + A,?
A+ A+ A =47 (in S frame)

) eqpni le of relativity demands that all laws of nature must be invariant for all
ers In the inertial frames. To ensure this invariantness of the laws, the physical

ities in terms of four vector notation rather than writing them in vector notation.

Some examples of four vectors

)] Position four vector
x[,t = (xlr er x3; x4-) = (x’ }’; Z, lCt)

Norm  x,? = xf + x5 + x5 + x£ is a Lorentz invariant.

. 12 _ 2 2 12 12 12 _ 2 2 2 2 _ ., 2
Proof: x'," =x'T1 +x'3+x'5+x'% - X, =x7+x;+x3+x5 =%,
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HW-Apply the TEs from (5) and follow the same procedure as in the above proof for any
arbitrary four vector.

i) Displacement four vector
dx, = (dxq, dx,, dx;, dx,) = (dx, dy, dz, icdt) (in differential form)

Norm dx,? = dx{ + dx3 + dx§ + dx7 is a Lorentz invariant.

Proof: dx',* = dx'? + dx'3 + dx'} + dx'} (in S’ frame) \
= y2(dx; + ifdx,)? + dx,? + dxs® + y2(dx, — ifdx,
_, (dx,® — B2dx,® + 2ifdx,dx,) + N
(dx,® + B2dx,” — 2ifdx,dx,)

=y*(1- ﬁz)dx12 +y2(1 = B*dx, +iax,
= dx? + dx3 + dx3 + dx? S e)
2
i)  Velocity four vector

We consider the uniform motion

atticle with velocity % = (v, vy, v,) in an inertial
elocity four vector v, = (vy, vy, v3, v,) N
e corresponding components of the position four

T in the frame attached to the moving particle, i.e.

— _
Uy = — here u = 1,2,3,4

v (vq, vy, V3, vy)
A dx, dx dx4)
T’ dt’ dt’ dr
=Y

1
(d_x dy dz d(ict))

at’ dt’ dt’ dt
Using Eifstein’s time dilation theorem, proper time 7 in the frame attached to the moving

particle is replaced with the time t of the laboratory frame S(x, v, z, t) .

dt = 2L = ydt

2
v
N/1—C—z

v, = y(vx, Vy, Uy, ic)

v, =y, ic)
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Norm  v,” =v{+vi+vi+v;

2 .
= (yv)* + (yvy)” + (yvp)? + (iyc)?
= y2(v? — c?) = —c?=always a constant independent of reference frames,
So, the norm of v, is a Lorentz invariant.

Alternately,

The velocity four vector for the particle in its own frame ® >
; _ dxr _
V= dru h %2'
v'# = (v'y, v'y, V'3, vy
, _ [dxy dx', dx’

Ve = \Tar dr ’ 7’
Since, dx'; = dx', = dx'; =0 (d dz' =0) and dx', =icdt' = icdr,

v', = v(0,0,0,ic)
Norm of v/, will be

v’#z T+8E W5+ 15 =040+ 0+ (ic)* = —c* (Same as norm of v,)

For both fgam norm is the same.
0 um-energy four vector or four momentum
Th

e ponents of this four vector is the product of the components of velocity four

vector with the rest mass of the particle.
Py = Moy, = myy(¥,ic) = m(v,ic) = (mv, imc)
> . E
Thus Dy = (p,L;),

where the relativistic mass of the particle m = m,y, relativistic momentum p = mv and

total energy E = mc?.
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2
Norm  p,*=p*+ (i—) Applying (E? = p?c? + mic*)

2
=p? - (E) = —myc?= always a constant independent of reference frames,

So, the norm of p,, is a Lorentz invariant.

e Since linear momentum and energy are coupled in the momentum-energy, four vector
in Minkowski’s formalism, the conservation laws of linear momen d energy

appear here as a single law: law of conservation of four-momentu

V) Force four vector or four-force or Minkowski forc
The components of force four vector are obtained by diff iatfing momentum-energy
four vector w.r.t. the proper time 7, i.e. \
F, =2 N4,2,3,4,
e

which is the egn of motion in Minkowski, spacetime:

Hence, % % (ﬁ,%ﬁ. 17)

(Applying forc or F

2
=y? (1 — :—2) F? = F?= always a constant independent of reference frames.

F is the Newtonian force considering absolute time w.r.t. all inertial frame and in that case,
the force vector becomes an invariant under Galilean transformation. So, the norm of F, is a

Lorentz invariant.
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Transformation properties (equations) of momentum

The motion of a body (of rest mass m,) moving with velocity u’ in S’ frame is observed by
two observers from S’ frame itself and from another inertial frame S . Let S’ frame is
moving with uniform speed V along +X direction w.r. to S frame. During the motion of
frame S', X'axis remains coincident with X axis and Y' remains parallel with Y and Z’
axis with Z axis. If u be the velocity of the body as observed by the observer from S frame
and if m be its relativistic mass in S frame and m’ be the relativistic mass for the same body

moving with velocity u’ in S’ frame, then by the mass variation theorem ify Einstein’s
Relativity

and m' =

where U=iu,+ ju, +ku, u?=u?+u?+u’
u=iu)+ jul+ku, U =u+u?+ul? \*
The momenta for the body w.r.to S and S’ fra
p=(p..p,. P, an "=(p 0y )
m

where p, =mu, = Mo u,, y=—T—=—=\,, p,=mu, = My u,,
u’ u’ A u’
1-— 1-— -
c c? c?
................................... (2)
! ’ mo ! ! mo !
p, =mu; = u p, =mu; = u.
l_ ur2 1_ ur2
c? c?
By app the Lorentz-Einstein transformation equations
t——X
— 2
X’= X Vtza y’=y1 Z’=Z’ t’: ¢ 27
-V -V
c C
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dx’

and also applying the definition of velocity, i.e. uj =%=% ,etc., we can derive the
dt
following velocity addition theorem in Einstein’s Relativity.

2 2
1V 1V
u’ —ﬁ u = —Cz u u = —Cz u
X vV ’ y vV y! z vV z
1—(:—2uX 1-—u, 1- o2 U,

V2
1—
;o my u, -V ;Mg c? U U
p)( - 2 V 1 py - 12 V y ! 7
\/—u 1_7ux \/—u 1_7ux
2 c C2 Cc
............................... (3)
ur2
We are now going to replace ,[1-—- (appeaged S in the above equations with an
C
expression in S frame. To do it, w, x@kcising the following mathematics.

2 2
:;2[02 (1—%qu —{uz +VZ-2uV —\/—2(u2 —uf)H
Vv c c
[1-av)

c

Transformation Properties for Mass and Energy in STR—Class Note (AB) Page 2



After simplifying

u
v P
C

Applying it along with the mass-energy equivalence principle E =mc*, mass variation

formula m= Mo = from (1) and expressions of the components p,, p,, p, frofg (2) in the
u

e
three expressions for components p;, p;, p; in (3), we have \
Vv
, Pt %

px=ﬁ’ Py =Py,
e

The inverse of these transformation relations ca o\ea ily by changing the primed
by unprimed and unprimed by primed quantiti -V, i.e.(B,E)D (F,E') and

Vi V.

!

P,=P;-

rame itself and from another inertial frame S . Let S’ frame is
rm speed V along +X direction w.r. to S frame. During the motion of
remains coincident with X axis and Y' remains parallel with Y and Z’

moving with velocity u’ in S’ frame, then by the mass variation theorem in Einstein’s
Relativity

and m’= )

o8 A p 2 .2 2 2
where u=iu + Ju +ku, U"=u;+u;s+u;
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A N A P 12 .12 2 2
u'=iuy + Jug+kup U =u Ul U

By the mass-energy equivalence principle E =mc?, the energy of the body w.r. to frame S
and that of the body w.r. to frame S'are

C C

2 \
1—u7 &
' C
E'= = E.
u’
1- c? %
u72
We are now going to replace ,/1-—- appeared in iN\th ve equations with an
c

expression in S frame. To do it, we are exercisi e fol

ing'mathematics.

(same as the previous,top discussed)

We have arrived at

g V
Applying itine % tion relation
1
V? 2
%) | )
r_ —2(1__j 1_—2E =~ _— __“F
(-5 "

1—l2uX 1- 2
c

Using E=mc? and p, =mu,, the final transformation relation for energy is obtained as
below.

ok 3k 3k ok %k ok ok 3k 3k %k ok %k *k *k kk
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Relativistic dynamics, Relativistic Mass

In Newtonian Mechanics, the mass of a body is assumed to be a constant physical quantity
independent of its speed w. r. to observers. By Newton’s second law of motion, under the
action of a constant force, the body moves with constant acceleration and if the body is
constantly acted upon by the force for a longer time, the body keeps picking up of velocity
and could finally move with speed greater than the speed of light c in free space. This goes
vehemently against the finding in the Special Relativity Theory that the speed c iS.the natural
upper limit for all objects. This is happening only when the influence of{the force would
gradually become less and less as the speed approaches ¢ and would ultimatelysvanish. This
view leads to the increase of inertia with speed, tending to infinity asithe.speed of the body
approaches ¢ and there would be practically no acceleration imythe,sense of velocity change.
Since inertia is proportional to mass (larger the mass, largeriis thefinertia), the mass has to be

increased with speed to infinity as speed approaches ¢ «

The above conclusion can be mathematically stated as . follows-
m, = myf (u)
where m, =mass of the body at rést (u =0)}called rest mass
m, =mass of the body moving with speed u, called relativistic mass
f (u) —a fuinctien of §peed u of the body such that
fu)>Ma u—0

and —oo a8 uU—C

In 1904, Lorentz for the first time gave the mass variation formula as
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Derivation of mass variation formula

According to the Relativity Principle, the physical laws and principles are invariant in all
inertial frames and same is the case for principle of conservation of linear momentum. If we
suppose that Newtonian concept about constancy of mass with speed is correct, the said
conservation principle valid in one inertial frame is found to be invalid in another inertial
frame under Lorentz Einstein transformation. It simply indicates that the Newtonian concept
of absolute mass is totally wrong, actually mass is a relative concept. It can be theoretically
shown by studying a dynamical collision problem from two different inertialdframes.

We consider a perfectly elastic collision process between two identical bedies e and 2 of
mass m’ moving with equal speed U’ in opposite directions in Ssinertial frame ‘moving with
uniform speed V along +X-direction w. r. to another inertialdframe 'S as‘'shown in the figure.

After collision, they get coalesced and comes to rest in S/ frame.

S Frame S' Frame

Y Y=V

Got coalesced
after collsion

v'=0

X o X'

0)

/4 Z

The observeriinS frame is observing the same collision process and according to him, body 1
of mass mzand bady‘2 of mass m, are moving in opposite directions with the speed u: and u
respectively andafter collision, they get stuck together and start moving with speed V along

+X-direction. By the relativistic velocity addition formula, we can write-

u'+Vv -u'+V
U =— and U, ==
1+ U 1+ (-u')
C C

Applying the principle of conservation of linear momentum in the collision process as

observed from the S frame, we have

mu, +m,u, = (ml + mz)v
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Now putting the expressions for uz and uz and then simplifying, we have the mass ratio as

: . , Vo,
To express this mass ratio in terms of uz and uz in S frame, we must evaluate — u"using the
C

above velocity formulae. Since
2 2
u12[1+i2u'] —uf(l—izu’j =4u'V,
c C

: . . V
we can mould it to the form of a quadratic equation of C—Zu' as\follows

2
_2(u12 u? —2C2)i {2(u12 +0,’ _2cz)}
w Ay ) (u v
c? 2(uA=u,?) '

!

. . . Vu
Since no material body can meve with the speed equal to ¢, —-<1 and therefore the —ve
C

sign is taken into consideration. After simplification, we have

Va2 -ut-u, - 2\/(02 —u?)(c* -u,’)

2 2 2
c (u’ -u,’)
Thus,
u,’
m_N <
m, ul2
CZ

We suppose that that the body 2 was at rest before collision w.r. to the observer in S frame.

So, putting u, =0 and m, =m,(which is again the rest mass for the body 1) in the above

equation, the mass ratio reduces to the form
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Dropping the index 1 from the above equation, we can make it more general for any object of

relativistic mass m moving with the speed u relative to a stationary observer as

e The variation of mass with speed of a material particle becomes quite significant at

high values of u. It can be shown by drawing a theorgetical graph of mﬂ against %

2772
(since ﬂz{l—(gj } ).
m, c

e The variation of mass with speed was first confirmed by Bucherer (1908), when he

. . e :
observed that the ratio of charge to the mass, i.e. - of an electron is smaller for fast

moving electrons than that for the slow moving electrons. It indicates the increase of

mass with speed of the electrons as the charge is an invariant quantity in Relativistic
Electrodynamics.
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Measured value of | Measured value of
% % in C/kg
0.3173 1.661 X 10t
0.3787 1.630 X 10t
0.4281 1.590 X 10!
0.5154 1.511 X 101t
0.6870 1.283 X 101t

Working Principle of the experiment:

The magnetic force F, exerted on a particle of charge q prejectedinormally into a uniform
magnetic field of magnetic flux density B provides the necessary eentripetal force F, to

revolve in a circular path of radius r. Thus

mu’

F,=F. =>0quB=
r

qa_u
m

rB
The electrons produced byany seurce (e.g. radioactive beta decay) are made to pass through
a velocity selector so that a‘collimated beam of electrons moving with certain speed can be

obtained. Thoseelectrons are injected normally into a uniform magnetic field

e The fine structure of Hydrogen spectrum could be well explained only when
relativistic, mass of the electrons revolving round the nucleus is taken into

consideration along with some other factors.
Mass-energy equivalence principle

In classical mechanics, the kinetic energy (KE) gained by a moving body is equal to the work
done on the body. It can be proved very easily by considering the displacement of a body of
constant mass m from A to B along +X-direction in space under the action of a variable force
F

X"
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Fy

O i~ %

0]

B B
W =[dw =[F, dx
A A

. Work done W :(KE)B —(KE)A

If work is done on the body (i.ey for +ve work done), the body will gain KE and if the body
itself does work against a forcex(i.e. for -ve work done), the body will lose KE. Physically
also it is true, but therenis ayproblem in the mathematical calculation under the light of
relativity. Astthe body,is moving under the action of force, magnitude of the velocity of the
body is changing with.time and so mass of the body never be a constant and so it could not be
brought out of\the integration. So, we again repeat the same calculation considering mass

variationfermula as follows.

Change in KE (AK)=(KE), —(KE), = Work done (W)
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B
:Iu(u dm+m du)
A

.. AK =(KE), -(KE), = (u2 dm+mu du)

> ey 0

Using the mass variation formula
m*c? —m’u’® = mic’

And taking the total differential in both sides of the above equation‘and«then'simplifying, we

have

u? dm+mu du = cihdmy,

. AK =(KE), —(KE), ZTCZ dmv=c?[m]>

My

Ma

(Here ma and mg are relativistic mass of the'bady at A with speed ua and at B with speed ug)
Change in KEy(AK)= (KE) —(KE), =(mg —m,)c? =(Am)c?

i.e. the KE gained'/ lost by a moving body is equal to c¢? times the increased / decreased

in mass of the body

If we suppose that'thesbody starts from rest at A (u A= O), its initial KE will obviously be

zero, I.e. (KE)A =0 and correspondingly mass will be equal to its rest mass, i.e. m, =m,.

Thus the,above relation becomes
(KE), =(mg —my)c?,
Which can be put into a general form by dropping the suffix B from the above expression as
KE =(m-m;,)c?

= mc® = KE +m,c?
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Here Einstein interpreted mc® as the total energy E . If the body is at rest, KE vanishes and

the body is still possessing m,c> amount of energy. This energy is defined as internal or

intrinsic or rest energy of the body. The rest energy m,c?includes all the possible type of

energies (e.g. intermolecular potential energy, molecular translational energy, molecular
vibrational energy, molecular rotational energy (thermal energy), electrical energy, etc.).
Thus,

Total Energy = KE + Rest Energy

or, E =mc® = KE +m,c?

or, E =mc?
= Total Energy = (Relativistic mass) x ¢,

which is known as mass-energy equivalence principle. Itistates that mass and energy are
not two independent entities, they are different aspects of the same thing. According to
the principle mass can be created or destroyed, hut'when this happens, an equivalent

amount of energy simultaneously vanishes or comes into being.

e The principle states thesuniversal equivalence of mass and energy. The mass and
energy of the universesare not conserved separately, but they are conserved as a
whole. In classical ‘meehanics conservation of mass and energy are treated as two
basic prineiples and it'is supposed that they are satisfied in any process in the reign of
classieal physics.

e In“our day to day life, the conversion of energy to mass and vice-versa are not
observed frequently, because this conversion is again restricted by some other very
fundamental conservation principles, e.g. conservation of lepton number, conservation

of baryon (proton +neutron) number, etc. According to the mass-energy equivalence

principle, if 1mg of sand is converted to energy, we have to have 9x10"J of energy.
But the conversion of the whole mass into energy is not permitted by the above said
conservation principles, because if the whole amount of sand gets converted to
energy, the baryon number (total number of proton + neutron) will not conserved.

e We could not use the Newtonian expression for KE of a body moving with high

speed comparable to the speed c as
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KEzlmuz,
2

where m is the relativistic mass of the body moving with speed u (z c). For
understanding the meaning, we have to do the following simple mathematics.
KE = E—m,c? =(m-m,)c?
2\
= 1—[1—“—2j mc?
c

o . u o
In relativistic mechanics, U~c_.and se wecan*not neglect — and its higher order
c

terms in the above equationsHeneeg, in relativistic mechanics
1
KE = —mu®.
2
o : . u
e Now we repeat the same calculation in classical limit when P <<1, the speed of the

body is very much smaller than c, e.g. a cricket ball moving with speed of 100 km/h

& 28mis. The speed of light in free space is 3x10° m/s and so % =0.0000000933.

KE = E—m,c? =(m-m,)c?

w2\ 72
= (1——2) —1|m,c?
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1u® 3(u’
o=+ =
2c” 8lc )
= , 1im,c
15( u®
| = | Ferrrrrieenn,
48| ¢*
3(u?) 15(u?Y 1,
= - = +— - F o —mOU
4\ c 24\ c
Hence in classical limit (i.e. in Newtonian Mechanics) KE :%mou2

e Concept of Relativistic Mass
In classical physics, the mass of the bodies are assumed to be constants and as a

consequence, in a two body collision problem under action—reaction forces, the
quantity mlﬁl+mzl]2 (total linear momentum) ‘remains theSame before and after

collision, which is the law of conservation, oOf, linear momentum of classical
mechanics. If the classical concept of mass is,applied in Special Relativity, it is seen
that the above mention quantity /may ‘increase or decrease after a collision. But the
Lorentz-Einstein transformation shows that there is a corresponding quantity

il U + My Uz.. remains conserved. If the quantity m
o 1Y L
St € c?

mass, then the total linear,momentum of the process would again be conserved. This

is defined as

mass is more correctlycalled as relativistic mass of the body moving with speed u. At

rest, when u=0jthis mass is said to be rest mass and it is then denoted by m, .

e Conceptof Rest Mass Energy and Rest Mass of a body

KE/of a body due to its ‘as a whole motion’ (translational + rotational + vibrational)

may be regarded as external energy and by subtracting it from the total energy
E = mc? we can get the rest mass energy m,c’ or total internal energy which includes

energies due to all molecular motions (thermal energy), intermolecular potential

energies, atomic potential energy, nuclear potential energy, etc. So,
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1 : , :
m, =— x (KE due to molecular motions + intermolecular PE + atomic PE + nuclear
C

Internal energy of a body does not remain constant for ever, because during heat
transfer, molecular KE changes; chemical reaction changes intermolecular PE and
atomic PE, nuclear reaction changes nuclear PE, etc. Therefore, rest mass of a body
never be a constant. Greater the internal energy, greater is the rest mass. In relativistic
picture, the rest mass reflects the internal energy of an object. So, a_potato,becomes
heavier when it is heated up. Similarly a compressed spring with additionah,PE is

heavier than a released spring.

Application of mass-energy equivalence principle

1) In the formation of a nucleus, the nucleons (proton. + neutron)save lost some amount
of their mass (mass defect) and that lost mass,getssconverted to energy, called
binding energy (BE), which is requiredito hotind all the nucleons together in a small

space. This BE is equal to c2 times thexost mass:
BE= C2 x[(npmp + nnmn)_mnucl:|
Where n and n, are respectively thesnumber of proton and neutron and m , m  and

m..q are respectively the mass of‘proton, neutron and nucleus.

o]

| poroeloem 4 | i r

2) In case of (e" —e") pair production in cosmic ray shower, energy is found to be
converted to mass and in (e —e") pair annihilation process, mass gets converted to

energy.
3) In nuclear fission reaction, the heavy nucleus like uranium may form fission

fragments. The total rest mass of all the fragments is less than that of the original
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heavy nucleus. The decrease in mass Am during the fission appears in the form of

energy equal to (Am)c2 as given by the mass-energy equivalence principle.

235 1 141
Ug, +n, = Bag

+Kr;? +3n; + Energy
The liberation of tremendous amount of energy due to conversion of mass into energy
in an uncontrolled chain reaction is the basic principle of atom bomb. And in
nuclear reactor, it is allowed to initiate in a controlled manner.

4) When two light nuclei like hydrogen or its isotopes combine to form‘@ heavy nucleus
undergoing the process of fusion, a tremendous amount of energyis released, which is
the basic principle of hydrogen bomb.

H/ +H — He} +n+ Energy

The degree of temperature and pressure to carry out the process is really high. Why?
The source of heat and light radiation of a star, iS'solely the nuclear fusion reaction

which is occurring at its core.

e Einstein’s law displaced the old lawwof the, comservation of mass, worked out by
Lavoisier, which says that matter;,understeod as mass, can neither be created nor
destroyed. In fact, every<chemicak,reaction that releases energy converts a small
amount of mass intogenergy. This,could not be measured in the kind of chemical
reaction known totthe 19th century, such as the burning of coal. But nuclear reaction
releases sufficient energy*to reveal a measurable loss of mass. All matter, even when
at "'rest,"«contains staggering amounts of energy. However, as this cannot be observed,

it was net understood until Einstein explained it.

Relativistic momentum

The relativistic mass of a body multiplied it by its velocity is defined as relativistic

momentum in Special Relativity, i.e.

Relation between relativistic momentum and KE
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Using the mass variation formula in the expression mc? = KE +m,c® and then squaring both

sides and simplifying and keeping the terms involving KE (K) in one side and then applying

the concept of relativistic momentum, we have
p’c? =k +2km,c?,
whereas in classical physics, it is in the form

K:%mw.

Relation between relativistic momentum and total energy

Squaring both sides of the expression E =mc? = KE +m,c?and then applying the equation

p’c® =k +2km,c®, we have got the following expression
E? = p’c? #mjc’
Lorentz invariant

If p and E are the relativistic momentumeand energy of a body of rest mass m,in S inertial

frame and p’ and E’ are the/orrésponding values with respect to another inertial frame S’

moving with certain uniform velacity w. r. to S frame, then by the above equation

2 2.2 12 12,2 2.4
E°—pc"=E"-p"“c"=mjc

Since m’c* is\ awconstant quantity independent of the frame of reference, the quantity
(E2 — pzcz) must,be an invariant under Lorentz-Einstein transformation, that is to say that

the quantity remains invariant in all inertial frames S, S°, S’’, etc. Such types of quantities,
which remain unchanged under Lorentz-Einstein transformation, are called Lorentz invariant.
Conceptually they are similar to Galilean invariants like space interval, time interval,
acceleration, force etc., which remain invariant under Galilean transformation. So, invariants

are always subject to particular transformations.
Zero Rest Mass

The relation between total energy E and momentum p in the relativistic mechanics is
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2 2.2 2.4
E°=p°c”+myc”.

From the mass-energy equivalence principle E = mc? and momentum and velocity relation

p=mu, we have

mc? u
p=—-U=pc=E—,
c c

For light waves or photons moving with the speed c, the above relation becomes
E=pc.

Both the above relations for total energy of a photon will be mathematically,consistent only

when the rest mass of photon vanishes, i.e. m,=0. So, we concludesthat any particle

moving with speed equal to ¢ must have zero rest mass ortin the other way we can state

as all the particles with zero rest mass propagate with'the speed of light c in free space.

The above mathematics also reveals that material, particlesswith finite rest mass, how much

small it may be, always move with speediless than that of light in free space.

For a material particle, m, =0

So, E* = p’°c*+mic* = E > pc

Again, p=mu p= m(; u andhence pc=E (3)
C C
Since, E > pc, sO"u<c

It therefore indicates indirectly that for material particle there is a limiting speed equal to c.

3k 3k 3k >k %k >k 3k 3k %k %k *k %k %k
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Michelson-Morley Experiment

Ether

Newton (1643-1727) proposed the corpuscular theory of light, while Huygens (1629-1695)
put forward the wave theory of light. Initially Newton’s theory was welcomed by all, but the
work of Young and Fresnel on interference and diffraction of light showed clearly the
validity of wave theory, completely rejecting the Newton’s theory. The concept of light as a
wave process in a medium thus established, and the theory of light was reduced to the theory

of oscillations in a medium that fills the entire universe.
Ether Hypothesis

The medium, that pervades throughout the whole universe and helps the light to propagate
with the speed equal to ¢ through it, was hypothesized as the ether.

Absolute velocity

The ether medium or ether frame remains stationary in space and the motion of a body
relative to the ether was supposed to be the absolute, and relative w. r. to other moving
frames. The velocity of a body w. r. to ether was called the absolute velocity of the body and
it was supposed to be independent of the motion of other bodies.

If we know the absolute velocity (VA) of a body A w. r. to ether, and if the relative velocity
(VBA) of another body B w. r. to the body A can be measured by doing an experiment, then

the absolute velacity (Vg) of the later one could be found out ( since Vg, = Vg — V). That is

the trick brilliantly applied by Michelson and Morley in his famous optical experiment.

Galilean Relativity, Maxwell’s theory of electromagnetism and findings of
the M-M Experiment

If we accept both Galilean Relativity and Maxwell’s theory of electromagnetism as basically
correct, Maxwell’s wave equation for propagation of light only holds in a unique privileged
frame where the speed of light in vacuum is equal to c. This absolute frame was hypothesized
as the ether frame, the ether medium that pervades the whole universe and it is also essential

for the propagation of light.
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For detection of that absolute frame, i.e. the ether medium, Physicists performed optical
experiments. Some of the famous experiments are Astronomical Aberration Experiment,

Fizeau’s Experiment, Michelson-Morley (M-M) Experiment, etc.

Out of all other experiments, M-M experiment (1881 - 87) was able to play a decisive role. It
was the acid test for detection of ether medium. The American Physicist A. A. Michelson,
later aided by E. W. Morley carried out a series of experiments to measure the speed of earth
w. r. to ether assuming that the speed of light is equal to ¢ w. r. to ether as given by
Maxwell’s theory and there is a ether wind blowing past the earth as the earth is moving
through ether (just like the air wind blowing past a motorcyclist pushing his hair in backward
direction) and this ether wind would alter the speed of light in the similar way the air wind
effects on the speed of sound. They thought that they could detect the change of speed of
light on earth due to the effect of ether wind and from this, they could measure the speed of
earth w. r. to ether. If they could, then it would establish the existence of ether. But they got a
null result (negative result), they could not measure the speed of earth through ether and
therefore they were unable to establish that there is ether. It was totally an unexpected result
and Michelson thought that somehow the ether wind disappeared during the experiment and
so they got a —ve result. So, they performed the same experiment at an interval of six months
when the direction of motion of the earth in its orbit became just opposite to that six months
back. But their experiment again yielded a null result. Michelson and Morley improved the
resolving power of their apparatus by modifying its design and performed the experiment at
different altitudes, at different seasons in a year expecting the effect of ether wind on light
propagation, but every time they got null result. They were unable to measure the speed of
earth through ether. The conclusion drawn from their experimental result is that since the
speed of earth could not be measured w. r. to ether, the existence of ether cannot be
confirmed and so the ether concept could be discarded, there is no meaning of hypothesing an
absolute ether frame where the light moves with the constant speed equal to c. And it is
established beyond doubt that the speed of light through free space is simply a constant equal
to c irrespective of the motion of source and observer. (The situation is like the measuring the
speed of a moving boat w. r. to the still water in a lake by performing an experiment on the
boat, assuming that the experimentalist cannot see the water or cannot feel the presence of
water in the lake through any other means. If the person on the boat cannot measure the speed
of the boat w. r. to the still water, he readily comes to the conclusion that there is no water in

the lake or if there is water, the existence of water is meaningless to him.!!!)
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Aim of the experiment:

Michelson and Morley carried out a series of experiments just to measure the speed of earth
through the ether medium assuming that there was a ‘ether wind’ blowing past the earth, as
the earth is moving through the ether and this ‘ether wind” would alter the speed of light in
the similar way the air wind effects on the speed of sound.

AY)

st LILLL

M7 Eorths M«Hm Fi—M,
l Wt
| E Han H1Ar blnw: M,—F
Baove I i, ‘-'PM
Ly

Michelson and Morley used an interferometer of remarkable sensitivity invented by them. In
the experiment, the light from the source S is split into two mutually perpendicular beams by
a half-silvered plate (on the back) P1. These two beams are made to reflect from two mirrors
My and M, which are placed normal to their paths at almost equal distances from the plate P.
The mirrors M1 and M are optically flat and heavily silvered on the front face to avoid
multiple reflections (to minimise the amount of absorbed energy on the glass plate) and are
arranged right angled to each other. To make the optical paths for the two beams I and 11
equal through glass, a compensating plate P> identical with the plate P1 but not silvered is
arranged parallel to plate Py in the path of beam I. The two beams | and Il, after suffering
reflections on the mirrors M1 and M2 respectively are allowed to reunite and the reunited

beam is observed through a telescope T and an interference pattern on the field of view of the
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telescope is observed. The time difference between the two beams I and Il that arises due to
their up and down journey across the distances |1 and I» respectively is the very cause of

formation of interference pattern on the field of view of the telescope.

Let us suppose that the earth along with the whole experimental set up is moving with speed
V w.r. to the ether medium in the direction P1 to My and so ‘ether wind’ blows with speed V
in the direction from My to P1. The ether wind effects the propagation of light beam | and so
the speed of light beam I in its up journey becomes (c-V) and in its down journey, it is (c+V).

(imagine the effect of wind on sound wave). For the beam 11, the speed of light becomes ¢/ =

Vc2 —V? in the perpendicular directions P12 M1 w.r. to the direction of motion of earth
through the ether.
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If tyand t2 be the time intervals taken by the two beams | and 11 respectively for their up and

down journey between the plate P1 and respective mirror M1/Mz, then
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And hence the difference in time at the time of reuniting of the two beams at the backside of

the plate Py is

If we suppose V=0 i.e. no ether wind, then also At # 0 and still the interference fringe pattern
would be observed through the telescope, since this At is the actual factor that governs the
fringe pattern. So, observation of interference pattern does not confirm the effect of ether

wind on the propagation of light wave and so, the existence of ether.

To observe the effect of ether wind, the whole assemblage is given a 90° rotation in its own
plane and the roles of the two beams are thereby got reversed. For this resulting situation, t{

and té are the time intervals required by the beam | and 11 respectively for their up and down

journey. So
1,
;2L 1
h="7\"vz
1=z
;2L 1
R\
1=
And the difference in time
1/2
21 1 21 1
/=4 ¢/ =21 _c2
At t; —t, . 1_V_2 . 1_V_2
c? c?
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Since At/ # 0, an interference pattern is again observed through the telescope after giving

90° rotation to the whole assemblage.

Since At # At/, the fringe system would appear to be shifted laterally after giving 90°

rotation. Theoretically, the number of fringes shifted in the fringe system is given by

l, + 1\ V?
o= (1) =
n A c?

But such shift to the fringe system is not bserved.
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Result of Michelson and Morley Experiment:

Lt--

If a shift of fringe pattern is observed, the speed of ether wind and so the speed of earth w.r.
to ether (i.e. V) can be calculated by measuring the number of fringe got shifted (6n) after
giving 90° rotation. But Michelson and Morley observed no such shift of fringe patter after
giving 90° rotation of the whole experimental set-up, and so they were unable to calculate the
speed of the ether wind and so the speed of earth w.r. to ether (i.e. V), that is to say they got
a null result (or negative result). They improved the resolving power of the apparatus by

modifying its design and also perform the same experiment at different altitudes at different
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seasons in a year expecting the effect of ether wind on the speed of light, but every time they

ended up with a null result.
Conclusion:

Michelson and Morley could not observe any lateral shifting of the fringe pattern after giving
90° rotation of the whole experimental set-up. It happens only when speed of light in free
space remains constant irrespective of the motion of the observer as well as of the source. It
indirectly means that no ether medium is required, where only the speed of light was assumed

to be equal to c. And so, the ether concept is thereafter discarded.
Some fragile attempts made to restore the status of ether

The conclusion drawn from M-M experiment was not welcomed by the Physics community
at that time for the general reason that the light needs a medium for propagation and ether
provides that medium. Michelson himself was not -happy with the conclusion and tried to
explain the —ve result of his experiment by proposing a hypothesis, called ‘ether drag
hypothesis’. According to the said hypothesis, Michelson assumed that the whole volume of
ether in the surroundings of earth was constantly dragged by the earth as the earth is moving
through the ether medium, if it were so, there would not be any ether wind on the surface of
earth and there were no question of alternation of the speed of light by ether wind. Because of

that, Michelson and Morley got null result.

But the hypothesis was unable to support the M-M experimental result. Because, the
hypothesis has an inherent defect as it goes against the idea of a calm ether sea at absolute
rest. Again the hypothesis could not be established by some other experiments (e.g. Bradley’s

Astronomical Aberration Experiment, Fizeau’s experiment, etc.).

Though the physicists had to keep aside the ether drag theory, still they were not brave
enough to accept the null result and constantly they were trying to formulate new theories to
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defend the —ve result and thereby try to establish the existence of ether. One of the attempts
was made by FitzGerald. He proposed the ‘length contraction hypothesis’, according to

which all material bodies moving w .r. to stationary ether with speed V got contracted by the

f A o . . . . . N
factor l—C—2 in the direction of motion, while the dimension perpendicular to the direction

of motion remained unaltered. If we apply this contraction to the M-M experiment, then the —
ve result can be explained beautifully. But the experiment performed by Kennedy and
Thorndike showed the null effect of FitzGerald contraction. So, -ve result remained

unexplainable in presence of ether.
The final blow on ether

At the first glance, all the hypotheses proposed for the sake of ether are found to explain the
null result of M-M experiment in presence of ether, but they are all ad hoc in nature and so
they are far from convincing. From the work of Poincare’ and Einstein in the development
of relativity theory, it was revealed that there is absolutely no place for those hypothesis and
the physicists ultimately have to accept that no absolute frame like ether is required to hold
the Maxwell’s equations for electromagnetism and speed of light is a constant equal to c w. r.

to any frame.

*kkhkhkhhhkhkkkkk

Michelson-Morley Experiment-class note (AB) Page 8



Minkowski’s four dimensional continuum

In classical physics space and time are independwnt and so when space coordinates X, y and z
of one inertial frame is transformed to another, the time coordinate t remains unaffected. In
relativity, however, space and time are not independent. The time coordinate of one inertial
frame depends on both the space and time coordinates of another inertial frame. By Lorentz-

Einstein transformation equation

it is found that space and time get entangled in relativity andq.H. Minkowski was the first to
suggest that it is judicious to treat both of them togetherand he also clearly showed how this
could be done.

It is convenient to express the results of Special Relativitysy regarding events as occurring in
a four-dimensional continuum, called Minkewskifspace or spacetime continuum. It is
briefly referred as ‘four-space’ or ‘world?. The coordinates chosen (x, y, z & t) form an
orthogonal coordinate system in fog dimensSigns (3-space + 1-time). A point representing an
event in Minkowski space is‘calledya “world point’. As a particle moves in real space with

time, its successive world points tiace'out a curve in that world, called ‘world line’.

Physical laws ongthe interaction of particles can be thought of as the geometric relation
between theig, worldylines. “In this sense, Minkowski may be said to have geometrized

physics.

ForfgeometricalN\representation, we consider only one space axis X and the time axis t
perpendicular to x-axis. Such a simplification does not lose any generality. For convenience,
x-axis is taken as a horizontal one and t-axis is vertical. It is convenient to keep the
dimensions of the coordinates x and t the same and for that time t is multiplied by the
universal constant ¢ (speed of light in vacuum). By putting ct=w, the Lorentz-Einstein

transformation equations become-

, X =Vt ,
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and

=o' =a(w- pX),

where a =

- and ﬂ=\i. There is a symmetry in the form of the above equations in
Vv c
e

the sense that we can go from one equation to the other by simply replacing*ene cooxdinate
with the other (x ).

Diagrammatic representation of inertial frames under Minkowski’swotation:

w=cty
2 Wordd Lima
D}IJLW LJWI/L—\/
O xX

—

To representithe S “inertial frame geometrically, we will draw the x and w axes
perpendicularly t@’each other and the motion of a particle is represented by a world line. The
tangent, to¥the werld line at a point P makes an angle 6 with the w-axis. So the slope of the

tangent with w-axis at P is given by

tan¢9=%=1%=g
do cdt c

. . . u . :
where u is the speed of the particle at P. Since — <1 for all material particle, tan& <1 and
c

hence @ < 45°. It means the tangent to the world line at any point is inclined at an angle less

than 45° with the w-axis (greater than 45° with the x-axis).
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For light wave, u=c and so tan@=1= @ =45°. It means that the world line of light wave is a

straight line making an angle 45° with either of the axis.

Diagrammatic representation of a moving inertial frame w.r. to another

inertial frame under Minkowski’s notation:

w'
W

ofSiae \4\\

g
CP x',
P v

0 X

v

To represent the inertial frame S’ moving with respectto ‘Sisame with uniform speed V along

+x-direction, we have to take the help of gquatiens

To draw the x/-axi ! framé, We apply the following trick. Since ' =0 along x' axis, the

second equatio ds w , which means that x’-axis is a straight line passing through

the origin of iagram and makes and angle ¢ with x-axis such that its slope tanp = .
- . . 1

A long, ' %axis in S’ frame, x’=0 and hence from the first equation, we get a):zx,

which s that o' -axis is a straight line passing through the origin of ®-x diagram making

: , . 1
an angle ¢' with x-axis such that its slope tan ¢’ = E :

. 1 - .
Since tang = and tan ¢’ :E, Q= %—(p, and it indicates that the angle made by x’-axis

with x-axis is exactly equal to the angle made by w’-axis with m-axis.
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The figure shows that o~ X' system is a non-orthogonal coordinate system. Since x' and '
axes are obtained by using Lorentz-Einstein transformation equations, it can be said that the

Lorentz-Einstein transformation transforms an orthogonal system to a non-orthogonal one.
Use of Minkowski’s diagram

a) Simultaneity is relative? Explain

4

We suppose that two events 1 and2 occ simultaneously at the instant t’ (=t/= t;/) in the
moving frame S/ at two pointgfx t those two events are appeared to occur at t; and
t> from the S frame and t I. t 1 occurred first, after than event 2 occurred. It shows
that the events whichfare si us in S’ frame are found to have time sequence in another
frame S. It me at si ity is not an absolute concept. Two simultaneous events for

one frame ne e simultaneous for another frame.
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The same conclusion can be drawn by considering two simultaneous events 1 & 2 occurred in
S frame at the instant t at x; and x.. They are found to occur at ti’ and t;/ instants of time, there
is a time order in their occurrence in S’ frame, though they are simultaneous events at S

frame.
b) Length contraction

We suppose that a rod of length 1m (Lo=A1A2=Xz-X1) is at rest in S inertial frame. A1B1 and
A>B, are the world lines for the two ends 1 and 2 respectively in @-XW\spacetime
corresponding to S frame. For an observer in S’ frame moving with uniférm velogity with
respect to S frame (along X-axis, say), the rod at rest in S frame is a meving,one%and so if he
wants to measure the length of the rod placed at rest in S framgghe MUSthave to take the
readings x1’ & x2/ of its two ends 1 & 2 simultaneously at t' (sdy) instafteftime on x’-axis. It
is seen clearly from the Minkowski’s diagram that the length ofithe moving rod as observed
from S’ frame L'= x2/- xi/ is smaller than L (=1m) forthe“stationary rod in S frame, i.e. the

moving rod gets contracted.

a) Time dilation

We suppose that two events 1 & 2 occurred one after the other at the same point x’ at the

instant of time t/ & t/ in S inertial frame moving with uniform speed along X-direction w.r.

to S inertial frame and the time interval At'=t, —t/ =1hour (proper time interval). But the

Class Note on Minkowski’s Diagram- Arup Bharali Page 5



time of ocuurence of the events from S frame recorded by the clock from S frame are found

to be t; and t; respectively for the events 1 and 2 and from the Minkowski’s diagram, it is

seen that the time interval At =t, —t, is found to be longer than 1 hour. It indicates that time

goes fast in the rest frame S, while it goes slow in the moving frame S/, that is to say time

gets retarded or dilated in a moving frame.

b) Twin paradoX

Twin A is on Earth"anthtwiniB goes for a space voyage riding on a spaceship moving at a
speed of 0.8c relative,to twinyA. World line of twin A is a straight line along w (=ct)- axis and
that of fog twih, Buip itseutgoing journey is inclined to w-axis less than 45° . When twin B
sends assignal,inievery one year interval, the twin A receives it after every three years of
intervali T hus, the time goes slow inside the spaceship of twin B with respect to twin A. So,
Twin Ayconfirms that twin B remains younger than him. It is shown by drawing the world
line for each signal sent by twin B to twin A. When six (06) years completed for twin B as
shown by the dots on twin B’s world line, ten (10) years elapsed for twin A as shown by the

dots on twin A’s world line.

From the point of view of twin B, twin A is moving away from twin B with speed -0.8c.

Twin A starts sending a signal to twin B in every one year of interval, but twin B receives
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them in every three years of interval. It is shown by the world lines for the signals sent by
twin A to twin B.

c) PastfPresent and future

Two inertial frames S'and S’ are represented by w-x and w- x' coordinate systems in

Minkowski’s’diagram. S’ frame is moving with constant velocity w.r. to S frame.
ININ"region 1 bounded by the world lines of light waves,

the events at O and P in S’ frame occur at the same place (x'=0), but at different instant of
time and the event P follows the event O and it is true for any event on the upper half of the
shaded area (region 1). All the events in the region 1 are absolutely in the future relative to

event O and so this region is called Absolute Future.
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LTE PAST

i) In region 2, i.e. lower half of thenshaded area,

for any event at P/ preceded 8vent @ intime in S/ frame, but occurred at the same place
(x'=0). S the events i the\région“2fare absolutely in the past relative to the event O and

therefore this regign is called Absolute Past.

Thus in region$el and"2, for all events there is a time order relative to event O without any
definite,_spaee okder always and so these two regions are called time-like and the world
intef7al OR or @F is called time-like interval. For world line there, the velocity (u) of a
body 1§ always less than ¢ and so two events can communicate (since signals are propagating

with speed c).
i) Inregion 3, i.e. in the undashed region,

Both events O and Q on x’ axis in S’ frame occur at the same time (w/=0), but they are
separated only in space. Thus the events O and Q appear to be simultaneous in region 3 and
so, this region 3 is called the present. The events O and Q are separated in space order rather
than in time order and so the region 3 is said to be space-like. The speed of anything
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(particles as well as signals) for communication should be greater than c. Since c is the
limiting speed for all, two events in region 3 never communicate and hence this region is

called Present.
Spacetime interval

In an Euclidean space, the separation between two points is measured by the distance
between the points. A distance is purely spatial and is always +ve. In spacetime, the
separation between two events is measured by the interval between the two eventsiwvhich has
taken into account not only the spatial separation between the eventS\but alsg their
temporal separation. The spacetime interval between two events is @efined,as

As? = Ar? — c?At?

Where c is the speed of light in free space and Ar and At denote the differences of the space

and time coordinates respectively between the events;

Spacetime intervals may be classified into three'disticttypes: i) Time-like interval ii) Space-

like interval and iii) light-like or null interval.
1) Time-like interval

Here c2At? > Ar? = As?& 0. ¥, the two events are separated by time-like interval,
enough time passes between them for there to be a cause-effect relationship between the
events. For a partiglentravellifg through space at less than the speed of light ¢, any two
events which o€cugto or'hy the particle must be separated by a time-like interval. Such
events can bexcdmmunigated by sending signals propagating at the speed equal to c or less
than c%and so,one of the two events always occurs in the past or future of the other event
and, thus cause ‘and effect relation exists. Event pairs with time-like separation have a

negative,squared spacetime interval, i.e. As? < 0.
i) Space-like interval

Here Ar? > c2At? = As? > 0.If two events are separated by space-like interval, not
enough time passes between their occurrences for there to exist a causual relationship
crossing the spatial distance by the signal to communicate between the two events at the

speed of light or slower. The spacetime interval for two events occur simultaneously at two
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different points in a reference frame is space-like. No signal moving with speed equal to c or
less than ¢ can communicate between two simultaneous events and so causal relationship
does not exists. Such events are considered not to occur in each other’s future or past.

Event pairs with space-like separation have a positive squared spacetime interval, i.e. As? >

0.

iii) Light-like interval

Here c?At? = Ar? = As? = 0. In light-like interval, the events define a s acetime
interval of zero. Events which occur to or by a photon along its path,, all have light-like

separation. Cause and effect relation for such events exists as they c Nu icated by

sending signals at the speed of light c. ®
* ***%

Class Note on Minkowski’s Diagram- Arup Bharali Page 10



Relativistic Doppler Effect

The increase in pitch/frequency of sound/light when the source approaches us or we
approach the source and the decrease in pitch/frequency of sound/light when the source
recedes from us or we recede from the source constitute the Doppler Effect/ Relativistic
Doppler Effect.

In case of sound the relation between the frequency v, of the emitted sound at source and that
of v for the received sound at the listener is given by

Where V,,V.andV are the speeds of the listener, source and the sot I to the medium (e.g.

air). If anyone moves towards the other, its speed is take recedes from the
other, it is taken as —ve speed and if at rest w.r. to the medi gspeedis zero.

Can you apply the above equation for light?

Simply no, as the Doppler Effect in sound app he Principle of Relativity. It is
because the effect in case of sound counts the,i velocities of the source and listener
w.r. to the medium. But, in case of lightyno medium is involved and only relative motion
between the light source and the eRis meaningful. The Doppler Effect in light must
therefore differ from that in sound:

Doppler Effect in light Q
We analyze the Dop 19ht in three different situations:

E
1) Transve opp ffect
2) Longitudinal Boppler Effect for Receding
3) Longit Doppler Effect for approaching

Let y one.
%\ erse Doppler Effect:
We consider a light source as a clock that ticks v, times per second and emits a wave of light

in each tick in the S, inertial frame. So the frequency of the wave at source is v, and the

proper time interval between two consecutive ticks is

and hence it is the time interval between two consecutive waves at the time of emission at
source.

Relativistic Doppler Effect-Class Note (AB) Page 1



Receiver Observer
Source
2 2
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Now we suppose that another inertial frame S is moving \m\speed \Y
w

perpendicularly to the line joining the S frame to S, frame. The ver IS at rest in S
frame is receiving the waves approaching him from the sourge at rame. The time
be

- &/f..i

interval between two consecutive received waves in S fram ual to t,, but it will
be longer than t,. It is because S frame is the rest frame observer and time is going
with the fastest rate there, while S, frame is the mov e for him and so time is going
slow in So frame according to the time dilation the instein’s Relativity. Thus the time
interval between two consecutive received es i e w.r. to the observer will be

VZ
& 1—C—2 <land hence t>t,)
And hence ber Of, recelved waves per second is % which is the frequency v of the
receiv@me. Thus

2
v=1'=i l—V—2
t t,\ ¢
2
V=v, 1—\(/:—2 ........................................ (3)

V2
Since ,[1-—-<1 =V <V,
c

i.e. the observed frequency is lower than that at the source. In terms of wave length, the
observed wave length A is longer than that A, of the light at the source, since
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Speed of light in free space C=AVy=AV e, 4)

and hence
A= 2 = s (5)
v
C
=>A> 4
As the wavelength received gets elongated, it is called red shift or it is sai e waves
get red shifted.
2) Longitudinal Doppler Effect for Receding < \
a) When the observer is receding from the source: g
s S :,,_'\,._"‘:
0
Receiver Observer
Source
2 3
|:<v; ~ 1Y
1 1
| A

We consider a light source as‘@ t ks v, times per second and emits a wave of light
in each tick in the So ine frame./So the frequency of the wave at source is v, and the
t, =

proper time interva ee nsecutive ticks is
1
— (same as eqgn (1))
Vo

which % terval between two consecutive waves at the time of emission at source.
Thi ppose that the inertial frame S is receding from inertial frame S, with uniform
speed g the line of joining the S frame to S, frame. Since the observer is at rest, time is

going with the fastest rate there and so the time interval between two consecutive received
waves in S frame is longer than t,. According to the time dilation theory in Einstein’s

Relativity

(same as eqn (2))
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But if we look into the situation, we have found that the total time T elapsed between two

: : Vt .
consecutive received waves should be longer that t by an amount equal to—, i.e.
c

T=t+\ﬁ=t(1+\ij ............................... (6)
C c

It is because the later wave has to cover an additional distance equal to Vt in comparison to
the distance travelled by the previous one. (From the time of receipt of a wave by the
observer at rest in frame S, the frame S has travelled a distance Vt within t tine interval
before the observer is going to receive the next.)

Hence the number of received waves per second is % which is tg\&v of the

received waves in S frame. Thus
1
V== E 3
T *&

Using egns (1), (2) & (6) in the above eqgn, we have

.................. (7
. \Y Vv .
Since €<1, 1_E<1 and lg —%d4"and hence <l =v<yv,,i.e.the observed
frequency is lower than at urce. In terms of wave length, if the observed wave
length be A and tha he | source be A, by eqns (4) and (7)
1+V
A=A, V% ................................... (8)
-V
- + - -
Sinc >1 = A>4, i.e. the wavelength of the received waves gets elongated or

Ve

the received waves get red shifted.

b) When the observer is receding from the source making an angle 8 with the
line joining the observer to the source:
This time, if we look into the situation, we have found that the total time T

elapsed between two consecutive received waves should be longer that t by an

VcosO)t .
amount equal to * C"CS X e
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A

Receiver Observer
Source

2 ~3
|:<],1 —~ P
1 1
/ 7N

(VcosO)t Vcos6

e

T=t
Cc
It is because the later wave has to cover an additional dista (VcosO)t in
comparison to the distance travelled by the previous one. (Fr of receipt of a wave
by the observer at rest in frame S, the frame S has travell (VcosB)t within t
time interval before the observer is going to receive

It makes no difference
receding from the obs 3
Relativity. The So [ ing away from S frame with uniform speed V along the line
of joining the me. Applying the procedure same as that in 2(a), we have
arrived at thepegns (#),and (8), which again show that the wavelength of the received light
gets elongate received light gets red shifted.

e source is receding from the observer making an angle 8 with the
e joining the observer to the source:
ame as (2b)

3) Longitudinal Doppler Effect for approaching

a) When the observer is approaching the source:
We consider a light source as a clock that ticks v, times per second and emits a
wave of light in each tick in the S, inertial frame. So the frequency of the wave at
source is v, and the proper time interval between two consecutive ticks is

Relativistic Doppler Effect-Class Note (AB) Page 5



Receiver Observer
Source

/2 . Y
Vo o~ L
1 1
1
t,=— (same as eqgn (1))

which is the time interval between two consecutive waves at the time eN ource.
S wi

: N

T 7%

We suppose that the inertial frame S is approaching the inerti o Wit uniform speed
V along the line of joining the S frame to S, frame. Since rest in S frame,
time is going with the fastest rate there and so the time intégv between two consecutive
received waves in S frame is longer than t,. Acc to, the¥time dilation theory in

Einstein’s Relativity
tO
t= ( eqn (2))

2
/1_V

% d that the total time T elapsed between two
Vt .
gshorter than t by an amount equal to?, i.e.

But if we look into the situation

consecutive received wav

est in frame S, the frame S has travelled a distance Vt towards S, frame
interval before the observer in S frame is going to receive the next.)

. 1 L
Hence the number of received waves per second is . which is the frequency v of the

received waves in S frame. Thus

Using eqgns (1), (2) & (9) in the above egn, we have

Relativistic Doppler Effect-Class Note (AB) Page 6



Since \i<1, €>1 =v>v, ,ie the

C C C

observed frequency is higher than that at the source. In terms of wave length, if the observed

wave length be 4 and that of the light at the source be 4, by egns (4) and (10)\

1-V
Since % <l = A<A4,, ie. the wavelength of the regceive es's shorter than that
1+\V
C
of the received waves or it is said that the received e shifted.

b) When the observer is approachin Kking an angle @ with the line
joining the observer to the sourge:

Reeiver Chserver
Source N

2 ~3
|:l<11 — ﬁ':’ﬂ

1

A 7R
A J
The total ti elapsed between two consecutive received waves should be shorter than t
(VeosO)t .
by an amouit e — e
(VcosO)t Vcos6
oo L0 (1t

It is because the later wave has to cover a distance less by an amount equal to (Vcos6)t in
comparison to the distance travelled by the previous one. Thus, the frequency of the received
wave will be

1 v 1 v
1 1 2 S
VET t(l_VCOSH) - 0(1_VC(C)SH) V="Yo (1_VCSSG)
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c) When the source is approaching the observer

It makes no difference whether the observer is approaching the source or the source is
approaching the observer, it is because only the relative velocity is meaningful in Einstein’s
Relativity. The S, frame is moving towards the S frame with uniform speed V along the line
of joining the S frame to So frame. Applying the procedure same as that in 3(a), we have
arrived at the egns (10) and (11), which again show that the wavelength of the received light
gets contracted or the received light gets blue shifted.

d) When the source is approaching the observer making an angle 8 with the line
joining the observer to the source:

(same as 3b) \&

Problem:

A distant galaxy in the constellation Hydra is receding from e A2'x 10’m/s. By
how much is a green spectral line of wavelength 500n =10%¥m) emitted by this
galaxy shifted towards the red end of the spectrum?

(Hints: A=A,

1+V
% , Y = 0.204, = _29% _ 615nm, which is in the
1_\% c 0.204

orange part of the spectrum. The s =1— 1y, =115nm.)

f transverse effect?

180°.
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Relativistic Doppler Effect is called 2" order effect. Why?

e The transverse Effect is sometimes called second order effect only to avert the
confusion with the longitudinal effect.

e The frequency relation in Doppler Effect for sound is given by

"5
A

V=V,

VS
. D
If the source is receding from the stationary listener, V, = 0and V/ is take &pee .
Hence %
VS %E

Or

Applying

nn—1)(n-2)

A+x)"=1+ - + T x3 4 ,(—1<n<1)
And if the source roachihg a stationary listener, then
-1
V
Or

-1 2 3
l:(]__v%) :1+\£+(\£j +(\£j F o
v, v Vv Vv

For light, if the source is receding from the observer, then by eqgn (7)

Relativistic Doppler Effect-Class Note (AB) Page 11



Relativistic Doppler Effect for light, then only
ical Doppler Effect for sound. That is why
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Transformation Equations for velocity, mass, momentum

and enerqy

Velocity Addition Theorem in Einstein’s Relativity

The motion of a ball in S’ frame is observe by two observers from S and S’ inertial frames and

u = (uy,uy,uy)and u’ = (u,',u,’,u,") be the velocities of the ball respectively,

Frame S Frame '
— = V
J.f.ﬁ;’ -.}
O u
O ¥ A0 x
2 2

A 4
_ dx’
X odt

By definition @A
@ and u', ==, etc.
dt

Applying the invers@;{iﬁstein transformation equations in the above definitions, we
ngr

can derive the f& tions between different components of velocities.
2\ , 2\ ,
Nad R L N (- ¢
Uy = —5—, usz and U,Z:T
[

1+C12ux’ 1+—>uUy 1+—>uy
. . [V
. b classical speed |Imlt(; K 1),
V2 14
1-- =1 and =0,
c c

the above velocity transformation equations revert back to Galilean type, i. e.

Uy =uUy+V, u,=u, and u,=u,



It indirectly proves that the velocity transformation equations in Einstein’s relativity are

correct.

The transformation equations for acceleration could also be worked out using the same
procedure, but they are not of particular use in relativity. In Newtonian mechanics, force
can be calculated from acceleration multiplying it by mass according to the Newton’s second
law of motion. But this trick will not work in Einstein’s relativity. Why? Because mass is no

longer an absolute concept there. We will divulge that point later.

e If we imagine a photon instead of a material particle moving along &ﬁr ction
in §” frame, then it can be shown very easily by using ve velocity
transformation equation that the speed of the photon w. r. t bserver in S frame is
again equal to c. (Since u,, = ¢, u, = Y - c ) It pravesyth e structuring of the

1+C12c -
Lorentz-Einstein transformation equations to K he Speed of light a constant

equal to c is precisely done.

e The above calculation also depicts, that“any Yelocity added to ¢ yields again the c

and c is a constant independent.@f the relative motion of observer and source.

e If the speed of light in eAs an absolute concept in Einstein’s relativity, then
what would be the fat pace and time in Galilean Relativity (or Newtonian
mechanics)? Id main as two absolute concepts? What about the mass?

Nothing can es faster than light

If we s se that’the speed of the material body in S’ frame along +X direction and the
spegeh, 0TNhe Frame itself are very near to c, then the velocity transformation equation in
Ein relativity shows that the speed w. 1. to the observer in S frame does not exceed c
which Contradicts the conclusion drawn from Newtonian mechanics. Let us choose u,'= ¢ —
6 and V =c — &, here §is very small. By using transformation rule

_ (c=8)+(c—8) _ 2(c—8)c?
- 1+%(c—8) " 2c(c-8)+82

X

- 2(c = 8)c*
x 2c(c—8)



According to Newtonian mechanics
Uy =u, +V=2c—-28 >c
Transformation equations of acceleration

The motion of a body moving with velocity u” (u’ =iu} + ju; +ku}) in S’ frame is observed

by two observers from S’ frame itself and from another inertial frame S. Let S’ frame is

And also applying the definition of velocit :%, etc., we can derive the
dt
following velocity addition theorem
2
1V
, u -V c’
uX = 1 = V uZ
1-—u,
c

ody is moving with acceleration in frame S’ , and observe

If we suppose&e
acceleration IS“as ax,ay,az) w.r. to frame S and E'z(a;,a’y,a;) w.r. to frame S’. By
definiu’%
D O
X a —

X

du
a =—, = , az
dt Yoo dt dt

And a, =—2= a =—2=r a =—1




= dui _ dt _ c’
*odtdt’ -V
dt ¢’
Vv
CZ

After simplifying &
\Y




Transformation properties (equations of mass)

The motion of a body (of rest mass m,) moving with velocity U’ in S’ frame is observed by

two observers from S’ frame itself and from another inertial frame S . Let S’ frame is
moving with uniform speed V along +X direction w.r. to S frame. During the motion of
frame S’, X'axis remains coincident with X axis and Y’ remains parallel with Y and Z’

axis with Z axis. If u be the velocity of the body as observed by the observer from S frame
and if m be its relativistic mass in S frame and m’ be the relativistic mass for the same body

moving with velocity u’ in S’ frame, then by the mass variation theorem in, Einstein’s

Relativity &
m m
m=——2 and m’ = —2 \
1-— 1-
o2 %’
-0 A A 2 2 2 2
where u=iu, + ju,+ku, U =u;+u;+u;

A N P 2 .12 2 2
u'=iu, + Juy +ku; U =ul U U

Thus the transformation relation for mass will b

We are now going re%&
transformation rﬂw an expression expressed in S frame.
By applying W -Einstein transformation equations
\
t——X
X—=V 2
%= t y,:y’ Z':Z, t': C

2 ! 2’
v V7
(o C

dx’

And also applying the definition of velocity, i.e. u, = o _ dt etc., we can derive the

gy dt’
dt
following velocity addition theorem in Einstein’s Relativity.



12

u .
To evaluate (1——2j , we follow the mathematics given below.
C

(-5
C
After simplifyirq{&

Using it in the transformation relation for mass, we have



e If the body at rest in S frame, u, =0 and m=m,, then the mass of the body moving
with uniform speed V along —X direction w.r. to the observer in S" frame becomes

' m,

which is in exact agreement with the mass variation formula in Einstein’s Relativity.

Transformation properties (equations) of momentum A{
The motion of a body (of rest mass m,) moving with speed u’ in S’ fra e‘&werved by
two observers from S’ frame itself and from another inertial fram : S’ frame is

moving with uniform speed V along +X direction w.r. to S fra uringjthe motion of
frame S’, X'axis remains coincident with X axis and Y' remains with Y and Z'
axis with Z axis. If u be the speed of the body as observe erver from S frame
and if m be its relativistic mass in S frame and m’ be thegelativistie‘mass for the same body
moving with speed u’ in S’ frame, then by the vamation theorem in Einstein’s
Relativity

X ~

+Juy +I2u;?u’
Momentum of the I.10°S and S’ frames
\ p=(p.p,.p,)  and  p'=(p..p. p)
where 2T, p, =mu, = N, p, =mu, = Ny

X1 y y ! z 7 1
u? u? u?
l——2 1- 5 ZI.——2
C C C
and
m m m
r_ r_ 0 ' _ _ 0 ' _ r__ 0 4
p, = mu, =U,, p, =muj = = Uy, p, =mu, = = U, .
u u u
1- 2 1- 2 1- 2
C C C

By applying the Lorentz-Einstein transformation equations



X' = =, y'=vy, Z'=1z, t'= =,
1—\/—2 1—\/—2
C c
dx’
and also applying the definition of velocity, i.e. u, = Zt, 3:, ,etc., we can derive the
dt

following velocity addition theorem in Einstein’s Relativity.

We are now going to replace ,|1- in\S’ frame appeared in RHS in the above equations

with an expression expressed 1 e.

To evaluate 1——&)£w the mathematics given below.
¢’ —u"? (&

one)

2
ux —Jut+VZi-2uV —\/—2(u2 ~u})
(v ¥V ¢ c
1_7
c?

After simplifying



2
2 (1_\/2j 2
u’ c u
R
hz“x)

Applying it along with the mass-energy equivalence principle E=mc”, mass variation

formula m= 0u2 and expressions of p,, p,, p, in the above expressions of components
e
P, p;, p, , we have &
\Y
_PgE \
Py =ﬁ’ Py =Py
'
The inverse of these transformation relations can be ob asi changlng the primed
by unprimed and unprimed by primed quantities a : p ) and
Vi V.
e
p, = P, =Py, P, =P

Transformation properti
The motion of a bo f regt mass m,) moving with speed u’ in S’ frame is observed by
two observers S’ e itself and from another inertial frame S . Let S’ frame is

moving wit [ peed V along +X direction w.r. to S frame. During the motion of
mains coincident with X axis and Y' remains parallel with Y and Z'

an its relativistic mass in S frame and m’ be the relativistic mass for the same body
mo ith speed u’ in S’ frame, then by the mass variation theorem in Einstein’s
elativity

R

and m' = ,

o8 2 7 2 .2 2 2
where u=iu, + ju,+ku, U =u;+u;+u;



A N A ) P 12 .12 2 2
u'=iu, + Juy +ku; U =uE U +U;
By the mass-energy equivalence principle E = mc?,

Energy of the body w.r. to frame S E=mc" = c

Energy of the body w.r. to frame S’ E'=m'c” = = c?
1- L::Z ‘{
Hence, energy transformation equation Q
u’ %
E'=———E k
1Y 5 \q

12
We are now going to replace 1/1—“2 in S" fr eared in RHS in the above equations
c
with an expression expressed in S frame
u’? %
To evaluate (1——2j , we follow thematics given below.
c

2

(@]

¢’ —u” =c”—(u +uy +ug

(already do

2 2
— W . 2(1—%UXJ —{u2+V2—2uXV—\é—2(u2—uf)}:l

Applying it in energy transformation relation



v U@ ¢ [ v
[1-%u.] -1,

Using E=mc® and p, =mu,_, the final transformation relation for energy is obtained as
below.



Twin Paradox

We consider two twins A and B and twin B is boarded on a spaceship for a round trip space
voyage, while twin A is at rest on Earth. The spaceship of twin B could fly with the speed
close to the speed of light. When twin B got departed from A, he synchronized his clock with
the clock of his brother A. According to twin A, since B is moving away from him with very
high speed, his clock must go slow. Therefore, after completion of the trip of B, when A
would meet his twin brother B, he would find that he (twin A) would get older than B (i.e. A
older, B younger).

If we discuss the ageing of twins A and B from the point of view of B, we fll fn into an
apparent paradox. According to twin B, the clock of A must go slow
away from him with very high speed and so ageing of A would be slo
B. Therefore, after completion of the trip of A, when B would mee brother A, he
would find himself older than A (i.e. B older, A younger). Thus, @ ends up his

journey, both the twins A and B find themselves to be old point of view.
But, at a time, they never be older or younger and that is th

N
Note: adox actually is not a paradox, as it can be resolved by noting the motions
of i B which are found to be asymmetric. Twin A always is at rest on Earth,
where in B completes a round trip and comes back to Earth. When the spaceship of twin

Y the turn to reverse the direction of its motion towards Earth, the spaceship is
behaving like an accelerated frame ( so non-inertial) and as a result of that twin B inside the
spaceship is experiencing some forces similar to those experienced by a passenger inside the
moving bus at the turning . But, twin A feels nothing and the overall effect will be such that
the twin A on Earth gets older.

*kkhkhkhkhhhkkkkk
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Concept of Ether and Michelson-Morley Experiment

Howbde

o o

What is ether and ether wind?

Discuss why the idea of all-pervading medium called ether was introduced.

Describe the Michelson-Morley Experiment.

Point out the logical conclusion of Michelson-Morley Experiment.

Or, What important conclusion can be drawn from Michelson-Morley Experiment?
How did Michelson interpret the negative result of his experiment?

How did Einstein interpret the negative result of Michelson-Morley Experiment?
Show how the result of Michelson-Morley Experiment supports Einstein’s, Postulates
of special Relativity. (1995)

Postulates of Special Relativity

State the two postulates of Special Relativity. (2009)

Einstein gave both the theory of special relativity ane the theory_of photo-electric
effect in 1905. In former theory he banished ether framPhysics, Comment on whether
it is possible to come to the same conclusion from the'latentheory also. (1999)

Write a short note on Reasoning leading to thestwoyostulates of Special Relativity.
(1999)

What is the limit where Special Relativity geeste,the Newtonian Relativity

Discuss how the laws of electromagnetismyleads to the relativistic principle. (2009)

Lorentz Transformation and its gohsequences

N

~

9.

Derive Lorentz spacg'time,transformation equations for two inertial frames.

State the condition,undegwhich the Lorentz-Einstein Transformation is relevant.
What is a speed of'spaee craft'whose clock runs 1 second slow per hour relative to a
clock on the®arth?

Explain 0w the tgansformation equation relating the length of a rod at rest to its
lengthdn motion indicates that the free space velocity is the upper limit of all
velocities. (1994)

FromiL orentz-Einstein Transformation equations, explain

(a)¥Relativity in Simultaneity

(BhLength contraction and

(e)4Time dilation (1998)

Define proper time.

Write the consequences of Lorentz Transformation.

Is it true that two events which occur at the same place and same time for one
observer will be simultaneous for all observers? Explain.

Find the Lorentz transformation expression for ‘area’ and ‘volume’.

10. Describe Twin Paradox of Special Theory of Relativity.
11. Write short note on Ultimate Speed.

Questions of STR-B. Sc. - class note- Arup Bharali
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12. Show how Lorentz-Einstein Transformation equations can be used to derive the
formulas of transformation of velocities.
Or, Derive the velocity addition theorem in Special Relativity.

13. Show that the velocity addition theorem is consistent with the second postulate of
Special Relativity.

14. Using velocity transformation equation, show that the velocity of light in vacuum is
the same in any two systems in uniform relative motion.

15. Show that any velocity (less than c) relativistically added to ¢ gives a result c.

(Hints: Let, the speed of the frame S/ w.r. to S frame S isV = c — e and a particle

(photon) is moving with speed equal to u,/c = c along X-axis in §' f

relativistic velocity addition theorem, the speed of the photon fro fra

to be-
/
_ultV  c+(c—-e) _
W =T = e )

2t
t an altitude of
where c is the speed

16. Muons have a mean life time of 2 ps. Cosmic ray m

9000m and travel towards the earth surface at a spe .
of light in free space. Apply the relativistic con 0
Q) length contraction and \

(i) time dilation

to show that it is possible for the m% the sea level before decaying.
(Hints:

Classical physics: Distance travelled, be decaying |1 =V xt=0.998cx2 ©5=598m , so

muons can not reach earth’s @ resghey undergo decay.
&
& Muon Frame

; —_
S
{} 9000 m

V=0.998¢
Lab
Frame S

77777 77 77777

Sea Level

Questions of STR-B. Sc. - class note- Arup Bharali
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Using the concept of time dilation

Mean life time w.r.t the S frame on earth At = at_ 24 =31.64us,

V? 0.998¢)’
\/1—(:2 \/1_( = )

hence distance travel before decaying |1 =V xt=0.998cx31.6445=9473m . Thus they can
reach earth surface before decay.

Using the concept of length contraction:

Distance travelled by the muons in lab. frame w.r.t muon frame to re surface

2 0.998¢)’
|:|0,/1—V—2 - 900041—# = 508.8m \
c c

Thus time require by the muons to reach the earth surface %
A = 1" _508.8m 1 7us
VvV 0.998c
cxl e

3s.If the instant of creation, it moves
f 0.9c, what is the distance it will traverse

which is shorter than their mean life time and so t rth’s surface before decay.)

17. The lifetime of an unstable particle atyrest 15,1
with a creation, it moves with afspee
before decaying. (1991)

18. Pions are radioactive and
be 1.77 x 1078s. A coldi

drop to half of its orig
Explain this result 0
(Hints:

Classically:

istance travelled just before dropping the beam intensity to half of its
=V xT,, =(0.99¢)x(1.77x10 °s) =5.26m

sit

using the concept of length contraction:

[ v? 0.99c)’
ontracted length d'=d 1—\;—2:39>< 1—( > ) =5.50m

c

(b)using the concept of time dilation: Half life time for the pions w. r. to the
laboratory frame

T s
T 2 17007 955,90

v \/1_\/2 \/ (0.99c)’
S —
(o}
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20.
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Hence distance travelled before dropping the beam intensity to half of its original
intensity d =V xT,, =(0.99¢)x(12.55x10 °s) =37.27m )

The speed of a beam of particles which have a half life of 2 x 107%s is 96% of the
speed of light c. Calculate the distance the beam travels before its flux is reduced to
half its initial flux. (1994) (AnS' 1.03 km)

2><10_

—(0.96c)
/1_7 (0. 96c

(O 96C 3 57x10°° S =1.03km)

(Hints: d =V xT,, =V x ——=

By what factor the clock set at the frame moving with veIouty 0,8Cwwith'respect to the
rest frame will appear slower if noticed from the rest frame?

21. Two light sources A and B situated at 10m apart flash at anfintérval of¥10%%s. At what
interval will an observer going at a speed of 0.9c in a diregtion Trgm“At6"B parallel to the
line joining the two sources will appear to him to flash fist?

22. Two coordinate systems (x,y) and (x/,y/) with a cemmen Okigin admit the following
transformation

x/ = x 0SB g Sind
y/ = &x sihg Ry coso

where @ is the angle between the x- axis and x/Naxis. Take ict for y and ict/ for y/, ¢ being
the velocity of light in vacuum. Now fifng a‘suitable value for 6 so as to obtain the following
transformation.

23.

24,

25.

26.

X/ X vt
N\ v2 - v2
fl—c— 1—C—2

How magyitimes Will the half life of an unstable particle increase, if the particle
moveswith aelocity of 0.99¢? (1998) (Ans: 7.09 times)

) 1 1 1 e
(Hints: === = =7.09, where T,,, T/, — Half life times of the

T \/_\/2 | (0.9%)°
c B c?

particle w.r. to laboratory frame and its own frame respectively.)

A'particle with a mean proper life of 1 microsecond moves through the laboratory at a
speed of 2.7 x 108m/s, what will be its life time as measured by an observer in the
laboratory?

A rod has a length of 1 metre. When the rod is in a satellite moving with respect to
Earth at a speed 0.99c, what is its length as determined by an observer in the satellite?
The rest radius of Earth is 6400 km and its orbital speed is 30 km/s. By how much
would the Earth’s diameter appear to be shortened to an observer on the Sun due the
Earth’s orbital motion?
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27. An electron is moving with a speed of 0.8c in a direction opposite to that of a moving
photon. Calculate the relative velocity of the photon with respect to the electron.

Electron Photon
0.8¢c C
u'v cx0.8c )

1+C—2 1+ o2 Q
28. Two elementary particles are approaching each other at sp e% d the relative

(Hint: u = u+Vv _ c+0.8c ¢

speed of one particle as seen from the rest frame of other.
29. A body moving at 0.5c with respect to an observer two fragments
that move in opposite directions relative to their CM%alon@ the e line of motion as

the original body. One fragment has a velocit i ard direction relative
to the CM and the other has a velocity of 0. x direction. What velocities

will the observer find for the fragments?, ( 0.8¢)
® © Slie]
! M.J.{fl-{ﬂr_' ; W= 0L

vttt SN NP WU Ik dr sl
g tﬂan\zﬂw}%ﬂ o 3
M&/,?zua{ V=0-5z aHacded
h LM e He bﬁl}f- :

(Hints: If u; is the velocity of a fragment moving in opposite direction in the CM

)

frame, then the velocity of that fragment w. r. to a stationary observer the velocity of

the fragment

u+V _ (-0.6c)+(0.5c) 1

1+ ul\Z/ 1+ (—0.60)2(0.5c) 7
c C

u, = c=-0.129¢c and
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u;+V _ (0.5c)+(0.5c)
UCZY 14 (0.50250.50)
30. A man on the moon sees two aircrafts A and B coming towards him from opposite
directions at the respective speeds of 0.800c and 0.900c.
a) What does a man on A measure for the speed with which he is approaching the
moon?
b) For the speed with which he is approaching B?

+ve ;
u, Ug

— e —

u, =

=0.8¢c)
1+

Moon

(Hints: a) vel. of the moon approaching A&wua=0.800c

+ve ;

u, 7777

Moon

From the point of view of A

B) “wel. of B approaching A

—Ug )+ (Y ~0.900c ) +(~0.800¢
i 1(+ (_l)JB)((_V)) B 1(+ (—0.902)c)((_0_800C)) =-0.988c

c? c?

Mass Variation, Mass —Energy Equivalence

1. Derive the formula for variation of mass with velocity.
Derive the expression for mass energy equivalence.
3. Discuss the applications of mass energy equivalence.
Or, Give two examples where mass-energy equivalence can be observed.

N
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4. Show that relativistic KE of a moving particle is ¢? times the apparent increase in
mass of the particle, where c is the free space speed of light.
(Hints: KE = Am X c?)

5. Use the transformation equation involving rest mass and moving mass to derive an
expression for the total mass-energy of a moving body.

6. State the mass energy equivalence relation. Show that for small velocity (E 1 1),

it yields the classical expressions for KE of a particle.

7. Show that a particle with zero rest mass must travel at the speed of light in
vacuum.

8. Calculate the velocity of an electron moving with KE of 1 Me\4 @iven that the
rest mass of electron is 9.1 x 10731kg. What is the moving mas§ ofithe elégtron?

9. An electron of mass 9.1 x 1073*kg moves with a speed @f 0.8c, where c is the
free space speed of light. Calculate the relativistic KE andishow that the value is
greater than what is obtain from classical calculation,

10. The total energy of a moving meson is exactly €hrice s rest, energy. Find the
speed of the meson.

11. The relativistic mass of a proton exceeds its, rést, mass byf1%. Calculate its speed
of its rest mass is 1. 67 x 10727kg.

12. At what velocity the mass of the particle,beeomesttwice its rest mass?

13. A moving electron has energy ofQ.50 MeW,what will be its corresponding mass?

14. Find the speed of a 0.1 MeV electronfaccording to classical and relativistic
mechanics.

15. Find the energy equivalent to'the test mass of the electrons and to the rest mass of
proton?

= 2032
16. Prove that a = —[1—“—2] :
¢
0

(Hints:F:d—P:M:d_mqumd_u:i My
g dd d d) [ "

1 .
17.Rrovesthat Emuz, where m = —0 = doers not equal to the KE of a particle
u

e
moving at a relativistic speed.
18. Solar energy reaches the Earth at the rate of about 1.4 KW per square metre of
surface perpendicular to the direction of the Sun rays. By how much does the
mass of the Sun decrease per second owing to this energy loss? The mean radius

of earth’s orbit is 1.5 X 10Im.

2
(Hints: m= CEZ = 4722' d

Questions of STR-B. Sc. - class note- Arup Bharali



Page 8 of 12

B 4><3.14><(1.5><1o”m)2 x(1.4><103J /smz)
- (3><108m/s)2

=4.4x10°kg /s)

(Total mass of the Sun is 2.0 x 103%kg)

7 ™
/ AN

AR

. e

energy of each.
(Hints: for the electron

E, = \/ p2c+(myc?) = (2. (0.511MeV )’ = 2.064MeV

For the photon E, = pc=
ives proton a KE of 10 erg . By what factor is

? Rest mass m; =1.67x107'g.

=7.68)

7=

21. Dynamite liberates about 5.4 x 10°J/kg when explodes. What fraction of its total

energy congent isthis?
i ly'E = mc?, Energy obtained from 1 kg mass=1kg ><(3><108m/s)2
°J
r

. : 5.4x10°
% tion of liberated energy to total energy = 910" )
22. Find the speed and momentum (in GeV/c) of a proton whose total energy is 3.500
GeV. (1 GeV=10° eV, Rest mass of proton=0.938 GeV/c?)
(Ans: v=0.963c, p=3.352 GeV/c)

) m m
(Hints: E=mc* = b_ |2 = _MMC
v2 v2
1-2 1-2
C c
E=K+mc? 262 = K2 + 2Km,c?
b p b
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23. Find the KE of an electron, its speed and its mass at the end of the acceleration in
a potential field of 10* volts.
(Hints: KE= 1eV =1.6x10™"°C x10*V =1.6x107°J,

2\ % 2%
m="E m -93x10%kg, T {1—“—2) = 3{1—(%) } -0.195)
C m, c c m

24. A particle has a KE of 62 MeV and a momentum of 335 MeV/c. Find its rest mass

(MeV/c?) and speed (as a fraction of ¢). (Ans: 812 MeV/c?, 0.37¢)

(Hint: Apply  k? 4+ 2kmyc? = p?c?
_ p?c®—k* (335MeV/c)’c? — (62 MeV)?
o= T oker 2 % 62 MeV X c2 -

Now, put the value of m, in the following eqgn to calculate Speed.
1
PR
p=mv= m°v2:>v=(1+mozc) “c=03
/1—':—2 P

25. What is the energy contained in 1g of coal? FHow
calories of heat delivered by burning 1g o
(Ans: Rest mass energy of 1g of coal i
liberated in the form of heat during

8 2

esithis pare with the 7000

2 as'much as the chemical energy
of coal.)

. What is the KE (in MeV) of the electron
to each observer? ; MeV, 0.077MeV)
(Hints: For the 1% t rest in the lab frame

1
2
h
C

2
F% server in motion in the lab frame
%Amxc2 =(m'—my)xc? = 1 m,c?, Here v ==Y —0500cis

KE

I
B>
I

1 u’ 1_ﬂ

the speed of the electron with w. r. to the moving observer with the speed V.)

27. Verify that ! =1+ KEZ .
u® m,C
1——
CZ
(Hint: Apply E = mc? = KE + myc? = mﬂ = 7:’“;2 +1, m=-2
0 0 1_u_2
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. 1 pz
28. Verify that ——= [1+——

2

u m,C
1-=

c
(Hint: £2 = (me?)? = pie? +mie? = () = Zo 41, m=-T)
. 0 mg ma3c? '

2
u
NS

29. For what value of E(= B)will the relativistic mass of a particle exceed its rest
C

mass by a given factor ‘f*?

2\
(Hint:f:A—m:m_m‘):l_(l_“_zJ U \/f(f+2))

m m c c (1+1)

30. At what speed does the KE of a particle equal to its rest mass energy? (Ans:

(Hints: KE =myc? =[m-m,]c* =mc® =u= E %

31. Find the momentum of an electron whose KEequ estmass energy of 511

KeV.
(Hints: p’c? = K? +2Kmy’* = % =
2
— p- /3CKZ \/5‘2% eV /¢) =885.1KeV / c)
who

peed is 0.600c.
(e
uc \c/C
0.
(0%00c )’
C2
33, T ins ofyrest mass 60.0kg are headed towards each other in spacecraft whose
edyrelative to the earth are 0.800c. What mass does each twin find for the

ST
(@]

( jl ~0.383MeV /¢)
C C

2
2
+ve ;

U, ’ Ug

I

(Hints: Speed of B heading towards A w.r. to A
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U u'+Vv N (—0.800c) +(—0.800c)
14 g 5~ ( —0.800c) (~0.800c)
C c?
(-ve sign indicates that B is moving in the opposite direction of the motion
of A)

=-0.976¢

my=— o 000K o554 etc)

\/1_ | (0976cy
C c?

34. Calculate the velocity of an electron moving with KE of 1 MeV, given that rest
mass of electron is 9.1x10*'kg . What is the moving mass of theglec

\94c)
1_7
35. A positron collides head-on with an electro ihilated. Each
particle had a KE of 1MeV. Find the wa \ resulting photon. (Ans:

N

_ —mc? = 2 _u_ E
(Hmts:E mc K+moc’m: m,

0.0041 A%)

e-Im wave

K+mc?) +(K+mgc?) /1:5

). =9.1x10"'kgx3x10°m/s = 0.511MeV )

lectron and a positron at rest come together and annihilate each other
w0 photons of equal energy. Find the energy of each photon.
minimum energy of a gamma ray photon in MeV which can cause

pair production. (GU) (Ans 1-042 MeV)

e

¢
Pair production

(Hints: E, =E_+E_ =hv=(mc?) +(mc?) ,etc)
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Minkowski Diagram

1. Write a short note on Minkowski Diagram.

Define a world line.

3. Take a Minkowski Diagram with two axes x and ® (w=ct) perpendicular to each
other. Show that in this diagram, the world line of light is a straight line making a 45°
angle with either axis whereas the tangent to the world line of a material particle
makes an angle less than 45° with the o axis.

4. Show how one can arrive at
Q) the relativity of simultaneity and

(i) the length contraction from space-time diagram.
5. Explain with examples the meaning of ‘time-like’ and ‘space-like. inate
6. What are time-like, space-like and light-like intervals? \

N
K

N

R
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