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CONCEPTS OF SPACE AND TIME IN EINSTEIN’S 

RELATIVITY 

Einstein’s Postulates of Relativity 

According to the principle of Galilean Relativity, all mechanical laws remain symmetrical in 

all inertial frames and so all mechanical phenomena appear the same in all inertial frames. 

Einstein was convinced for general reasons that all physical laws including the laws of 

electromagnetism must be equally valid in all inertial frames of reference. So, all inertial 

frames are equally permissible to all physical laws and principles and therefore, they are 

equivalent (Principle of equivalence). Einstein raised this concept to the status of a postulate 

in his Relativity Theory, which states- “All physical laws and principles of nature are 

identical in all inertial frames of reference”—(Einstein’s Relativity Principle). This 

postulate elevates the Galileo’s Relativity Principle of classical mechanics to the status of 

general law for the entire physics. 

This above postulate therefore inherently rejects the need of any absolute or 

preferred/privileged frame like ether from the point of view of the applicability of natural 

laws. Since the Maxwell’s laws of electromagnetism are the laws of nature and they are 

equally valid in all inertial frames, the speed of light in vacuum must be the same in all 

inertial frames, otherwise it would demand an specialized frame where the speed of light is 

equal to that value (c) obtained by Maxwell. Einstein followed this consequence of his above 

postulate very minutely and later on, he put forward this consequence in the form of another 

postulate of his Relativity Theory, which states- “the speed of light in vacuum is the same in 

all inertial frames, independent of the relative motion of observer and source of light”---

(Principle of Speed Constancy of Light) 

The above two postulates are as a whole called Einstein’s Special Relativity Theory. 

Einstein’s Relativity Principle still remains as a Postulate- Why? 

The Relativity Principle has been verified experimentally to a very high degree of accuracy, 

but still it has been kept as a postulate, not as a law due to two reasons. All experimental 

instruments have their inherent limitations, so more sophisticated instruments invented in 

future may show deviation or defect of the principle. Again, there may be some undiscovered 
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phenomena in nature which may not be within the realm of the principle and so we are not in 

a position to accept beforehand the principle for these phenomena. 

Underlying meaning of the Principle of Einstein’s Relativity: 

According to the principle, all physical laws remain symmetrical in all inertial frames and so 

the phenomena appear the same in all inertial frames. If a piece of equipment in one inertial 

frame with a certain kind of machinery in it, the same machinery will work in another inertial 

frame in the way same as that in the former frame and therefore the conclusion of an 

experiment in both the frames is the same. That is the reason why we cannot distinguish one 

inertial frame from another one. 

Space and time (from wiki) 

The idea of time and space has occupied human thought for thousands of years. These things 

at first sight seem simple and easy to grasp, because they are close to everyday experience. 

Everything exists in time and space, so they appear as familiar conceptions. However, what is 

familiar is not necessarily understood. On closer examination, time and space are not so 

easily grasped. The dictionary is not much help here. Time is defined as a "a period," and a 

period is defined as "time." This does not get us very far! In reality, the nature of time and 

space is quite a complex philosophical problem.  

It is common to say that time ‘flows’. In fact, only material fluids can flow. Men and women 

clearly distinguish between past and future. A sense of time is, however, not unique to 

humans or even animals. Organisms often have a kind of "internal clock," like plants which 

turn one way during the day and another at night. Time is an objective expression of the 

changing state of matter. It is the way we express an actual process that exists in the 

physical world. Time is thus just an expression of the fact that all matter exists in a state of 

constant change. It is the destiny and necessity of all material things to change into something 

other than what they are and so time is inseparable from matter. 

A sense of rhythm underlies everything: the heart-beat of a human, the rhythms of speech, the 

movement of the stars and planets, the rise and fall of the tides, the alternations of the 

seasons. These are deeply engraved upon the human consciousness, not as arbitrary 

imaginings, but as real phenomena expressing a profound truth about the universe. Time is a 
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way of expressing change of state and motion which are inseparable features of matter in all 

its forms. 

Space is the "otherness" of matter, to use Hegel’s terminology, whereas time is the process 

whereby matter (and energy, which is the same thing) constantly changes into something 

other than what it is. 

Space can also express change, as change of position. Matter exists and moves through space 

and the number of ways that this can occur is infinite: forward, backward, up or down, to any 

degree. There is a difference between time and space. Movement in space is reversible. 

Movement in time is irreversible. They are two different (and indeed contradictory) ways of 

expressing the same fundamental property of matter—change.   

What about the concept of Space and Time in Einstein’s Relativity 

It was Einstein’s conviction that Physical laws must be invariant and the speed of light in 

vacuum must be same equal to c in all frames and it would happen only at the cost of the 

Newtonian concept of absolute space and absolute time. So, Einstein reformulated the 

transformation equations for space and time coordinates in such a way that they always yield 

speed of light as a constant equal to c and space and time as two relative concepts.  

According to Einstein, two people observing the same event in the same way could perceive 

the singular event occurring at two different times, depending upon their distance from the 

event in question.  These types of differences arise from the time it takes for light to travel 

through space.  Since light does travel at a finite and ever-constant speed, an observer from a 

more distant point will perceive an event as occurring later in time; however, the event is 

‘actually’ occurring at the same instant in time.  Thus, ‘time’ is dependent on space.  

The same set of equations formulated by Einstein himself was also developed by Lorentz in 

the course of his mathematical study of electromagnetism. They derived the same set of 

equations from two different perspectives, so, to give due honour to both of them, the new 

transformation equations are called Lorentz-Einstein transformation equations. 

Lorentz-Einstein Transformation Equations: 

The postulate of Relativity Theory about the speed constancy of light in vacuum demands a 

new set of transformation equations other than that Galilean type, because those 
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transformation demands that the speed never be an invariant. The new transformation 

equations must respect both the postulates of Einstein’s Relativity and therefore they must 

satisfy the following four conditions- 

1. The motion of a body in a straight line in one inertial frame S must be observed 

unaffected from another inertial frame 𝑆’ moving with uniform velocity 𝑉⃗  relative to 

frame S. 

2. If 𝑆’ frame is moving with uniform velocity 𝑉⃗  relative to frame S, frame S will have a 

uniform velocity −𝑉⃗  relative to frame 𝑆’. 

3. The transformation themselves must satisfy the Einstein’s Principle of Relativity. 

4. The speed of light is the same in all inertial frames. 

The first three conditions are beautifully satisfied by Galilean transformation equations. So, 

the form of the new set of transformation equations should have the form as below 

 

 

( )x x Vt = − ……………………….(1a) 

y y = ……………………………..….(1b) 

z z = ………………………………....(1c) 

 

In the case where the ( ), , ,S x y z t      inertial frame is moving with uniform speed V  along 

+ve X -direction w. r. to ( ), , ,S x y z t  inertial frame and during the motion, the X  -axis 

coincides the X -axis, and Y  -axis remains parallel to Y -axis and Z  -axis to Z -axis. 

The first three conditions demand an inverse transformation of the following type 
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( )x x Vt  = + …………………….(2a) 

y y= ………………………………(2b) 

z z= ……………………………….(2c) 

 

Using equation (1a) in (2a), we have 

 ( )x x Vt Vt  = − +  

And then simplifying, we have 

2

2

1 x
t t

V






  −
 = +  

  
………………….(3) 

So, the new transformation equations will be 

( )x x Vt = − ………………………(4a) 

y y= ………………….…………(4b) 

z z= ………………….…………(4c) 

2

2

1 x
t t

V






  −
 = +  

  
…………….(4d) 

If 𝑢𝑥 and 𝑢′𝑥 be the velocities of a moving particle w. r. to S and 𝑆’ frames respectively, then 

by definition 

x

dx
u

dt
=           and           x

dx
u

dt


 =


 

Hence 

2
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1

x
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






 
−    = = =
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+  
  

 

2

2

1
1
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u V
u

u

V





−
 =

 −
+  
 

………………………(5) 

                       (Using equations (4a) & (4d)) 
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Instead of the material particle, if we imagine a moving light particle, i. e. a photon, then by 

the 4th condition, we have to write 

x xu u c= =  

Hence from equation (5), we have 

2

2

1
1

c V
c

c

V





−
=

 −
+  
 

 

And then simplifying, we have 

2

2

1

1
V

c

 = 

−

 

We have to choose + ve sign for 𝛼, because the transformation equations in (4) only then 

revert back to Galilean type in classical speed limit (
𝑉

𝑐
≪ 1). So, after putting the values 

of 𝛼  in the new transformation equations in (4), we can readily obtain the Lorentz-Einstein 

transformation equations as follows  

2

2

( )

1

x Vt
x x Vt

V

c


−

 = = −

−

……….(6a) 

y y =  …………………………(6b) 

z z = ………………………….(6c) 

2

22

2

( )

1

V
t x

Vct t x
cV

c


−

 = = −

−

………(6d) 

In matrix form 

2

0 0

0 1 0 0

0 0 1 0

0 0

V
x x

y y

z z
V

t t
c

 

 

− 
    

    
   =  
     
     −    

 

……….......(7a) 
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Or,   x A x 
 = , , 1, 2,3, 4  =     …......……..(7b) 

where  1x x= , 2x y= , 3x z= & 4x t= etc. and A  is a 4 × 4 matrix. 

And by substituting dashed coordinates by undashed ones and undashed by dashed and  𝑉 by 

– 𝑉 in the above equations, we can easily derive the Inverse Lorentz-Einstein transformation 

equations as follows   

2

2
1

x Vt
x

V

c

 +
=

−

…………………….(8a) 

y y= …………………………….(8b) 

z z= ……………………………..(8c) 

2

2

2
1

V
t x

ct
V

c

 +

=

−

………………………(8d) 

** Since in classical speed limit 1
V

c

 
 
 

,    
2

2
1 1

V

c
−        and             

2
0

V

c
  , hence the 

Lorentz- Einstein transformation equations revert back to Galilean type, i. e. 

x x Vt = − , y y = ,  z z =      and     t t =  

Concepts of Space and Time in Einstein’s Relativity 

The Lorentz-Einstein transformation equation for time shows that the time measurement of 

one observer in high speed comparable to the speed of light, there is mixed a little bit of 

space as seen by the other and in the same way, in the space measurement of one observer, a 

little bit of time of the other is mixed up. (But we cannot realize this mixing of space and time 

when we are moving with high speed.) And from it, we can logically come to the conclusion 

that for two different observers in two different frame moving with a relative velocity, both 

space and time for them never be identical and they therefore are relative. 

Space and time are relative concept in Einstein’s Relativity 

In Einstein’s relativity, one of the postulates is that the speed of light in free space is constant. 

If it would be so, time and space never remain as two absolute quantities irrespective of the 
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motion of the observers. Let us assume that two events are occurred in S frame at two 

different points P(𝑥1, 𝑦1, 𝑧1) and Q(𝑥2, 𝑦2, 𝑧2) at the instants 𝑡1 & 𝑡2 respectively. Applying 

Lorentz-Einstein transformation equation for time, we can find out the time of occurrence of 

the events 𝑡′1 & 𝑡′2  w. r. to 𝑆’ frame as follows. 

𝑡1
′ =

𝑡1 −
𝑉
𝑐2 𝑥1

√1 −
𝑉2

𝑐2

,           𝑡2
′ =

𝑡2 −
𝑉
𝑐2 𝑥2

√1 −
𝑉2

𝑐2

 

It is clear from the above two expressions of  1t  and 2t   that if the events are simultaneous in 

S frame, but they are not appeared so from the 𝑆’ frame. The meaning is that simultaneity is 

not an absolute concept, but it’s a relative one. 

Again, if someone is intending to measure the length of a moving rod, he has to calculate the 

difference of the readings taken simultaneously for the two ends. Since the simultaneity is a 

relative concept, the distance between the two ends will be different for different observer 

and therefore distance is a relative concept. 

The conclusion now we can draw is that time and space are both relative concept and 

absolute space and absolute time are totally inadmissible in Einstein’s relativity.  

Simultaneity and order of events  

We suppose that two firecrackers explode simultaneously in S  frame and these events both 

take place on X-axis, at ( )1 1,0,0,A x t  and  ( )2 2,0,0,B x t  and  2 1t t t = = . Another observer in 

S   frame is also observing  the events took place in S  frame. The second observer has also 

recorded the positions and time of occurrence of the events as ( )1 1,0,0,A x t    and 

( )2 2,0,0,B x t    from his own S   frame corresponding to the events occurred at ( )1 1,0,0,A x t  

and ( )2 2,0,0,B x t  respectively. If we suppose that S   frame is moving with uniform speed V 

along +X axis w.r. to the inertial frame S , then applying the Lorentz-Einstein 

Transformation Equation for time coordinate, we have 

1 12

1
2

2
1

V
t x

ct
V

c

−
 =

−

 and 
2 22

2
2

2
1

V
t x

ct
V

c

−
 =

−
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And it is seen clearly that 2t t =  (not simultaneous) in S   frame even though 2 1t t t = =  in S  

frame and either 2 1t t   or 2t t  , i.e. there will be an order of event w.r. to the observer in S   

frame (i.e. any one of the two events will take place earlier than the other in S   frame). Thus, 

two events which are simultaneous in one inertial frame never be simultaneous w.r. to other 

inertial frames and there is an order of events for the other frames. It means that simultaneity 

never be an absolute concept as thought in Newtonian Mechanics (Galilean Relativity), but 

a relative one.  

Since simultaneity is relative, space never be absolute. Let us take the example of a rod. The 

length of a rod can be determined correctly from the difference of the coordinates of the two 

ends of the rod. Since, simultaneity is relative, the distance between the two ends of the rod 

measured from one inertial frame never be the same as that from another inertial frame. Thus, 

distance/space never be an absolute concept, as thought in Newtonian Mechanics (Galilean 

Relativity), but a relative one.  

Lorentz-Einstein transformation equations represent a rotation in 

coordinate axes. 

 

Let the position coordinates of a point be x, y & z w. r. to the frame S and those w. r. to the 

frame 𝑆’ be 𝑥’, 𝑦’ & 𝑧’. Here frame 𝑆’ is the new position of the frame S after giving it a 

rotation through an angle 𝜃 about z axis. Thus 

𝑥 ′ = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 

𝑦 ′ = −𝑥 𝑠𝑖𝑛𝜃 + 𝑦 𝑐𝑜𝑠𝜃 

𝑧 ′ = 𝑧 

In matrix form 
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(
𝑥′
𝑦′
𝑧′

) = (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
)(

𝑥
𝑦
𝑧
) 

 

                                  Or             𝑥′𝑙 = 𝑨𝑙𝑚 𝑥𝑚,               𝑙, 𝑚 = 1,2,3 

(Summation is carried over repeated index according to Einstein’s summation convention) 

Where 𝑨  is a 3X3 matrix and 

              𝑥1 = 𝑥,       𝑥2 = 𝑦,   &     𝑥3 = 𝑧  

             𝑥′1 = 𝑥 ′,    𝑥′2 = 𝑦 ′ &     𝑥′3 = 𝑧′. 

The Lorentz-Einstein transformation equations in (7a, 7b) are similar to those for rotation of 

coordinate system and that is why, it is loosely said that the Lorentz-Einstein transformation 

represents rotation in coordinate axes. 

Lorentz-Einstein transformation for an arbitrary direction 

The 𝑆’ (𝑥’ , 𝑦’, 𝑧’).  inertial frame is moving with uniform velocity 𝑽  along any arbitrary 

direction w. r. to 𝑆(𝑥, 𝑦, 𝑧, 𝑡) inertial frame. We consider a position vector 𝒓 for the point P 

w.r. to the origin O of S frame and resolving it parallel and perpendicular to the direction of 

motion of S’ frame. From the above diagram 

𝑶𝑷 = 𝑶𝑸 + 𝑶𝑹 

Or  

𝒓 = 𝒓∥ + 𝒓⊥…………………………….(1) 

 

We can express 𝒓∥ and 𝒓⊥ in terms of 𝒓 as follows. 
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𝑟∥ = 𝒓. 𝒏̂ ⇒ 𝒓∥ = (𝒓. 𝒏̂)𝒏̂ = (
𝒓.𝑽

𝑉2
)𝑽………..(2a) 

( 𝒏̂ =
𝑽

𝑉
 is the unit vector along the direction of propagation of the 𝑆’ frame, i.e. along 𝑽 ) 

𝒓⊥ = 𝒓 − 𝒓∥ = 𝒓 − (
𝒓.𝑽

𝑉2
)𝑽………………….(2b) 

Again, w. r. to the origin 𝑂’ of 𝑆’ frame, the position vector of the point P is 𝒓′ and resolving 

it as above, we have 

𝑶′𝑷 = 𝑶′𝑸 + 𝑶′𝑻 

Or 

𝒓′ = 𝒓′∥ + 𝒓′⊥……………………………(3) 

By the Lorentz-Einstein transformation equations in (6)- 

𝒓′∥ =
𝒓∥−𝑽𝑡

√1−
𝑉2

𝑐2

.....................................(4a) 

𝒓′⊥ = 𝒓⊥……………………………(4b)         

 (since 𝑶𝑻 = 𝑶𝑹) 

So, from equations (3), (4a) and (4b)  

𝒓′ = 𝒓′∥ + 𝒓′⊥ 

And hence 

𝒓′ =
𝒓∥−𝑽𝑡

√1−
𝑉2

𝑐2

+ 𝒓⊥=
(
𝒓.𝑽

𝑉2)𝑽−𝑽𝑡

√1−
𝑉2

𝑐2

 + (𝒓 − (
𝒓.𝑽

𝑉2)𝑽)...................(5a) 

And by the Lorentz-Einstein transformation equation for time in equation (6d) 

𝑡′ =
𝑡−

𝑉

𝑐2
(𝑂𝑄)

√1−
𝑉2

𝑐2

=
𝑡−

𝑽.𝒓

𝑐2

√1−
𝑉2

𝑐2

…………….(5b) 

These two equations (5a) and (5b) are the Lorentz-Einstein transformation equations for 

arbitrary direction of motion for 𝑆’ frame w. r. to S frame. 
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Length Contraction 

 

The length of a rod placed at rest parallel to 𝑋’ axis in 𝑆’ frame is measured by two observers 

stationed at the origins of S frame and 𝑆’ frame. The observers at O and 𝑂’ have to take the 

readings of the two ends 1 and 2 on the X and 𝑋’ axes respectively. 

For the observer in 𝑆’ frame, the length, called proper length, is 

𝐿′ = 𝑥′2 − 𝑥′1 

And for the observer in S frame, the length is 

𝐿 = 𝑥2 − 𝑥1 

But here it should be remembered that the rod is a moving one for the observer in S frame 

and so he has to note down the readings 𝑥2 & 𝑥1 of ends 1 and 2 simultaneously 𝑡1 = 𝑡2, 

otherwise the rod will change its position w. r. to the observer.   

Now applying the Lorentz-Einstein transformation equation for space coordinate, it can be 

readily shown that 

𝐿 = 𝐿′ √1 −
𝑉2

𝑐2
 

Since    𝑉 < 𝑐,    √1 −
𝑉2

𝑐2
  < 1, the above relation shows that  𝐿 <  𝐿′ , i.e. the observed 

length from S frame from which the rod is in motion is found to be contracted by the factor  

√1 −
𝑉2

𝑐2 . But for a rod placed parallel to 𝑌’ or 𝑍’ axis, the length will not get contracted, as 
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the coordinates corresponding to these two axes do not change during the motion of 𝑆’ frame. 

So, we can conclude that the dimension of a moving object parallel to the direction of motion 

only gets contracted w. r. to the stationary observer. 

 

• Since in classical speed limit(
𝑉

𝑐
≪ 1),  1 −

𝑉2

𝑐2  ≈  1,   and so   𝐿 = 𝐿′ and the meaning 

of which is that the space can be assumed as an absolute physical quantity. It 

indirectly reveals the exactness of Newtonian mechanics in studying the dynamics of 

slowly moving bodies.    

• If possible, we suppose that the speed of the rod is equal to or greater than that of light 

in free space w. r. to a stationery observer. In such case the factor  √1 −
𝑉2

𝑐2  would be 

zero or imaginary, and so the situation would be unphysical. The situation would be 

physical only when the speed of the rod is less than c. So, nobody can move with 

speed beyond c except light. Light is the limiting speed (ultimate speed) for all in 

Einstein’s relativity.  

Time dilation or retardation of time  

We suppose that two events occur at a point P (𝑥’) in 𝑆’ inertial frame at the instant of time 𝑡′1 

& 𝑡′
2(> 𝑡′

1) for the events 1 and 2 as registered by the clock at rest in 𝑆’ frame moving with 

uniform speed V w.r. to S inertial frame. So, the time interval for the observer in 𝑆’ frame is 

2 1t t t   = −  

which is called the proper or intrinsic time interval.  

If the time of occurrence of these events as registered by a clock at rest in S frame be 𝑡1 

corresponding to event 1 and 𝑡2 corresponding to the event 2, then the time interval for the 

observer in S frame is         2 1t t t = −  
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Using inverse Lorentz Einstein Transformation equation (8d) for time 

2 2 1 12 2

2 2

2 2
1 1

V V
t x t x

c ct
V V

c c

   + +

 = −

− −

. 

Since 1 2x x x  = = ,                     
2

2
1

t
t

V

c


 =

−

  

Since    𝑉 < 𝑐 ,    √1 −
𝑉2

𝑐2   <   1, the above relation shows that t t   , i.e. the time 

interval registered by the clock from S frame is longer than that registered by another clock 

moving along with 𝑆’ frame by the factor  √1 −
𝑉2

𝑐2 . So, the time gets dilated in S frame, 

whereas it gets retarded in 𝑆’ frame w.r.t. the observer in S frame.  

 

The clock (in S’ frame) in motion with speed V w. r. to the S frame goes slow down by the 

factor  √1 −
𝑉2

𝑐2 , that is to say a moving clock always goes slow w. r. to a stationary clock. 

It can be said in a different way as every clock goes at its fastest rate when it is at rest w. r. to 

the observer and it goes on slowing down with its speed relative to the observer. 
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Experimental evidence for time dilation 

Generally, the muons (Secondary Cosmic Ray (CR) Particles) are created at the top of the 

atmosphere, as the highly energetic Primary CR particles enter the atmosphere and hit the 

nuclei of air molecules. The muons just after creation start moving towards earth surface with 

a very high speed comparable to speed of light. The intensity of muons was first measured at 

the top of the mountain and then using an absorber with absorbing power equal to that of the 

air column from top of the mountain to the sea level, and again the intensity of muons was 

measured at the summit. The experimental results revealed that the intensity of muons at sea 

level was much lower than that of at the top of the mountain. The only possible explanation 

of the result is that these muons would be unstable particles and so they would undergo 

decay. The decay of muons can be described by the exponential law which states 

0( )
t

I t I e 
−

= , 

Where 0I  and ( )I t are the intensities of muons at the beginning t=0 before using the absorber 

and that of after time t=t when traversing through the absorber and  is the mean life time. 

Using the measured intensities 
0I  and ( )I t and putting the theoretical value of t in the above 

equation, the mean life time   for muons is found out and it is found to be equal to 5
10

−
= s. 

To calculate t, we take H H
t cV
=  , where H is the distance from top of the mountain to sea 

level and V is the speed of muons through air and it is approximately equal to the speed of 

light c in free space. 

According to Special Theory of Relativity, the life time  for a moving muon w.r. to a 

stationary frame would be longer than that of 
0


 
for a stationary muon (i.e. in the muon 

frame) and  

2

2

0

1 V
c




−

= . 

To calculate 
0


 
, we take the energy of a cosmic ray muon equal to 910E = eV, which was 

found experimentally. From Einstein’s mass energy equivalence principle 

2

2
0

2

2
1

m c

V
c

m cE 


 
 
 

−

= = , 

since rest mass energy of muons is ( ) 2 8

00 10E m c


= = eV, so,  

2

2

01 0.1
V

c

E

E
− = = . Now, 

considering the formula for time dilation, the mean life time of a stationary muon (in its own 

frame) is calculated out as 
6

0 10 1s s −= = , which is shorter that the life time   for a moving 
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muon w.r. to the laboratory frame. If it can be shown experimentally that the life time is of 

the order of 1 s , it will prove the validity of time dilation, otherwise this concept would have 

to be discarded.   

Experimental set-up to determination of the mean life time of muons 

 

CR particles are made to pass one by one through the 1st counter, lead absorber for absorbing 

the secondary muons and 2nd counter before entering the filter surrounded by the 3rd group of 

GM counters and the 4th group of counters below the filter. Both the 1st and 2nd counters are 

connected to a coincidence circuit whereas the 3rd group of counters is connected with a 

delayed coincidence circuit and the 4th group is connected with an anticoincidence circuit. 

The reason for connecting the 4th group with an anticoincidence circuit is just to isolate the 

muons, that undergo disintegration inside the filter, from the other hard cosmic ray particles 

passing through the 1st, 2nd, 3rd  and 4th counters. In order to measure the life time of muons, 

the 3rd group of GM counters is connected with a delayed coincidence circuit. The circuit has 

the characteristic that it is activated only when one of the counters in the 3rd group in the 

surroundings of filter receives pulse after a definite interval of time since the appearance of a 

pulse in the 1st and 2nd counters. The coincidence delay time can be varied manually and that 

delayed time is known to the experimenters. If the delay time coincides with the life time of 

muons, the electrons formed as a result of disintegrating of muons fall on one of the counters 

of the 3rd group at the right instant and in that case a ( )e −  decay is registered. If the 

delayed coincidence circuit is set for any other delayed time, the circuit will not be activated. 

So, by tuning the delayed time, the ( )e − decay processes can be registered. The mean life 

time measured in this experiment gave conclusive evidence of time dilation as predicted by 

Special Relativity.           
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Concept of Four Vector in Minkowski’s spacetime 

We consider an inertial frame 𝑆′(𝑥′, 𝑦′, 𝑧′, 𝑡′) moving with uniform speed V along +ve X-axis 

w.r. to inertial frame 𝑆(𝑥, 𝑦, 𝑧, 𝑡). By Lorentz-Einstein Transformation Equations (LETE)- 

𝑥′ = 𝛾(𝑥 − 𝑉𝑡)......................(1a) 

𝑦′ = 𝑦.....................................(1b) 

𝑧′ = 𝑧......................................(1c) 

𝑡′ = 𝛾 (𝑡 −
𝑉

𝑐2 𝑥)......................(1d) 

Where 𝛾 = (1 −
𝑉2

𝑐2
)

−1
2⁄

. 

Employing LETE  

                    𝑟′2 − 𝑐2𝑡′2 = 𝑥′2 + 𝑦′2 + 𝑧′2 − 𝑐2𝑡′2             (in 𝑆′ frame) 

= 𝛾2(𝑥 − 𝑉𝑡)2 + 𝑦2 + 𝑧2 − 𝑐2𝛾2 (𝑡 −
𝑉

𝑐2
𝑥)

2

 

                                      = 𝛾2 [(𝑥2 + 𝑉2𝑡2 − 2𝑉𝑥𝑡) − (𝑐2𝑡2 +
𝑉2

𝑐2 𝑥2 − 2𝑉𝑥𝑡)] + 𝑦2 + 𝑧2 

= 𝛾2 (1 −
𝑉2

𝑐2
) 𝑥2 + 𝛾2(𝑉2 − 𝑐2)𝑡2 + 𝑦2 + 𝑧2 

                                     = 𝑥2 + 𝛾2 (
𝑉2

𝑐2 − 1) 𝑐2𝑡2 + 𝑦2 + 𝑧2 

                                     = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 

Hence, 

                 𝑟′2 − 𝑐2𝑡′2 = 𝑟2 − 𝑐2𝑡2.....................................(2) 

That is,  𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 is a scalar invariant (Lorentz invariant) under LET. 

Minkowski introduced the concept of four dimensional spacetime continuum with four 

coordinates 𝑥1, 𝑥2, 𝑥3  &  𝑥4, where 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧  &  𝑥4 = 𝑖𝑐𝑡 (𝑖2 = −1). Here 

𝑥4 is kept imaginary for the fact that space and time essentially different and the factor c 

gives 𝑥4 the same dimension as the other three space coordinates  𝑥1, 𝑥2 & 𝑥3. With these 

new coordinates 𝑥1, 𝑥2, 𝑥3  &  𝑥4, the above Lorentz invariant can be written as 

𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2       (In S frame) 

𝑥′2 + 𝑦′2 + 𝑧′2 − 𝑐2𝑡′2 = 𝑥′1
2 + 𝑥′2

2 + 𝑥′3
2 + 𝑥′4

2 (In 𝑆′ frame), 
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And by eqn (2), they are equal 

𝑥′1
2 + 𝑥′2

2 + 𝑥′3
2 + 𝑥′4

2 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2..............................(3) 

So, 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 is again called a Lorentz invariant and 𝑥1, 𝑥2, 𝑥3  &  𝑥4 are called 

the components of a true four dimensional position vector or position four vector 𝑥𝜇. 

𝑥𝜇 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥, 𝑦, 𝑧, 𝑖𝑐𝑡 ).....................................(4) 

𝑥𝜇
2 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2  is called the norm of the position four 

vector 𝑥𝜇. By eqn (3), this norm 𝑥𝜇
2 is a Lorentz invariant. 

(Position vector in 3D space  𝑟 = (𝑥, 𝑦, 𝑧 ) = (𝑥1, 𝑥2, 𝑥3) and norm 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 =

𝑥1
2 + 𝑥2

2 + 𝑥3
2) 

Now we are going to formulate TEs for the components of position four vector 𝑥𝜇. For that, 

we have to call the LETEs from (1). 

𝑥′ = 𝛾(𝑥 − 𝑉𝑡) →  𝑥′
1 = 𝛾 (𝑥1 −

𝑉

𝑖𝑐
𝑥4) 

                                                         ⇒ 𝑥′1 = 𝛾(𝑥1 + 𝑖𝛽𝑥4)  ......................(5a) 

   Here (𝛽 =
𝑉

𝑐
) 

                                            𝑦′ = 𝑦 → 𝑥2
′ = 𝑥2.........................................(5b) 

                                          𝑧′ = 𝑧 → 𝑥3
′ = 𝑥3  ......................................(5c) 

𝑡′ = 𝛾 (𝑡 −
𝑉

𝑐2
𝑥) ⇒ 𝑖𝑐𝑡′ = 𝛾 (𝑖𝑐𝑡 − 𝑖𝑐

𝑉

𝑐2
𝑥) 

                                                         ⇒ 𝑥′4 = 𝛾(𝑥4 − 𝑖𝛽𝑥1)......................(5d) 

Or 

(

𝑥′
1

𝑥′
2

𝑥′
3

𝑥′
4

) = (

𝛾 0 0
0 1 0

𝑖𝛽
0

0 0 1
−𝑖𝛽 0 0

0
𝛾

) (

𝑥1

𝑥2
𝑥3

𝑥4

)...............................(5e) 

𝑥′𝑖 = Ω𝑖𝑗𝑥𝑗             (𝑖, 𝑗 = 1,2,3,4).......................(5f) 

 (using Einstein’s summation convention) 

The above set of TEs (5a – 5d) are the TEs for the components of position four vector 𝑥𝜇. 

Those TEs can be used to define a four vector. 
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Definition of four vectors / world vector 

If the components of any four dimensional vector 𝐴𝜇 = (𝐴1, 𝐴2, 𝐴3, 𝐴4) are transformed 

one inertial frame 𝑆(𝑥, 𝑦, 𝑧, 𝑡) to another 𝑆′(𝑥′, 𝑦′, 𝑧′, 𝑡′) moving with uniform speed V along 

+ve X-axis w.r. to inertial frame 𝑆(𝑥, 𝑦, 𝑧, 𝑡) in the fashion similar to that for position four 

vector 𝑥𝜇 as described in the eqns in (5) is known as a four vector and world vector. 

Thus, the TEs or transformation rules for the four vector 𝐴𝜇 must be 

                                           𝐴′1 = 𝛾(𝐴1 + 𝑖𝛽𝐴4)  ...................(6a) 

                                            𝐴2
′ = 𝐴2.........................................(6b) 

                                           𝐴3
′ = 𝐴3  ......................................(6c) 

                                         𝐴′4 = 𝛾(𝐴 − 𝑖𝛽𝐴1)......................(6d) 

Or 

𝐴′𝑖 = Ω𝑖𝑗𝐴𝑗                (𝑖, 𝑗 = 1,2,3,4).......................(5f) 

Like the norm of position four vector 𝒙𝝁, the norm of any four vector 𝑨𝝁 must also be 

Lorentz invariant. 

Proof:  

                         𝐴𝜇′2 = 𝐴1′2 + 𝐴2′2 + 𝐴3′2 + 𝐴4′2             (in 𝑆′ frame) 

= 𝛾2(𝐴1 + 𝑖𝛽𝐴4)2 + 𝐴2
2 + 𝐴3

2 + 𝛾2(𝐴1 − 𝑖𝛽𝐴4)2 

                                  =𝛾2 [
(𝐴1

2 − 𝛽2𝐴4
2 + 2𝑖𝛽𝐴1𝐴4) +

(𝐴1
2 + 𝛽2𝐴4

2 − 2𝑖𝛽𝐴1𝐴4)
] + 𝐴3

2 + 𝐴4
2 

= 𝛾2(1 − 𝛽2)𝐴1
2 + 𝛾2(1 − 𝛽2)𝐴4

2 + 𝐴3
2 + 𝐴4

2 

                                   = 𝐴1
2 + 𝐴2

2 + 𝐴3
2 + 𝐴4

2 = 𝐴𝜇
2           (in 𝑆 frame) 

• The principle of relativity demands that all laws of nature must be invariant for all 

observers in the inertial frames. To ensure this invariantness of the laws, the physical 

quantities in terms of four vector notation rather than writing them in vector notation.   

 

Some examples of four vectors 

i) Position four vector  

𝑥𝜇 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥, 𝑦, 𝑧, 𝑖𝑐𝑡 )    

Norm     𝑥𝜇
2 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 is a Lorentz invariant.      

Proof:    𝑥′𝜇
2

= 𝑥′1
2 + 𝑥′2

2 + 𝑥′3
2 + 𝑥′4

2        →     𝑥′𝜇
2

= 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 = 𝑥𝜇
2 
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HW-Apply the TEs from (5) and follow the same procedure as in the above proof for any 

arbitrary four vector.     

 

ii) Displacement four vector 

 𝑑𝑥𝜇 = (𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3, 𝑑𝑥4) = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑖𝑐𝑑𝑡 )        (in differential form) 

Norm               𝑑𝑥𝜇
2 = 𝑑𝑥1

2 + 𝑑𝑥2
2 + 𝑑𝑥3

2 + 𝑑𝑥4
2 is a Lorentz invariant.     

Proof:             𝑑𝑥′𝜇
2

= 𝑑𝑥′1
2 + 𝑑𝑥′2

2 + 𝑑𝑥′3
2 + 𝑑𝑥′4

2                 (in 𝑆′ frame) 

                                  = 𝛾2(𝑑𝑥1 + 𝑖𝛽𝑑𝑥4)2 + 𝑑𝑥2
2 + 𝑑𝑥3

2 + 𝛾2(𝑑𝑥1 − 𝑖𝛽𝑑𝑥4)2 

                                  =𝛾2 [
(𝑑𝑥1

2 − 𝛽2𝑑𝑥4
2 + 2𝑖𝛽𝑑𝑥1𝑑𝑥4) +

(𝑑𝑥1
2 + 𝛽2𝑑𝑥4

2 − 2𝑖𝛽𝑑𝑥1𝑑𝑥4)
] + 𝑑𝑥3

2 + 𝑑𝑥4
2
 

                                  = 𝛾2(1 − 𝛽2)𝑑𝑥1
2 + 𝛾2(1 − 𝛽2)𝑑𝑥4

2 + 𝑑𝑥3
2 + 𝑑𝑥4

2
 

                                  = 𝑑𝑥1
2 + 𝑑𝑥2

2 + 𝑑𝑥3
2 + 𝑑𝑥4

2                    (in 𝑆 frame) 

                                  = 𝑑𝑥𝜇
2
 

 

iii) Velocity four vector 

We consider the uniform motion of a particle with velocity 𝑣⃗ = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) in an inertial 

frame 𝑆(𝑥, 𝑦, 𝑧, 𝑡) . The components of the velocity four vector 𝑣𝜇 = (𝑣1, 𝑣2, 𝑣3, 𝑣4)  in 

𝑆(𝑥, 𝑦, 𝑧, 𝑡) are obtained by differentiating the corresponding components of the position four 

vector in 𝑆(𝑥, 𝑦, 𝑧, 𝑡) w.r.t. proper time 𝜏 in the frame attached to the moving particle, i.e. 

𝑣𝜇 =
𝑑𝑥𝜇

𝑑𝜏
           here 𝜇 = 1,2,3,4 

𝑣𝜇 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

𝑣𝜇 = (
𝑑𝑥1

𝑑𝜏
,

𝑑𝑥2

𝑑𝜏
,

𝑑𝑥3

𝑑𝜏
,

𝑑𝑥4

𝑑𝜏
) 

     = 𝛾 (
𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
,

𝑑𝑧

𝑑𝑡
,

𝑑(𝑖𝑐𝑡)

𝑑𝑡
) 

Using Einstein’s time dilation theorem, proper time 𝜏 in the frame attached to the moving 

particle is replaced with the time t of the laboratory frame 𝑆(𝑥, 𝑦, 𝑧, 𝑡) .  

𝑑𝑡 =
𝑑𝜏

√1−
𝑣2

𝑐2

= 𝛾𝑑𝜏  

𝑣𝜇 = 𝛾(𝑣𝑥, 𝑣𝑦, 𝑣𝑧 , 𝑖𝑐) 

𝑣𝜇 = 𝛾(𝑣⃗, 𝑖𝑐) 
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Norm       𝑣𝜇
2 = 𝑣1

2 + 𝑣2
2 + 𝑣3

2 + 𝑣4
2 

                       = (𝛾𝑣𝑥)2 + (𝛾𝑣𝑦)
2

+ (𝛾𝑣𝑧)2 + (𝑖𝛾𝑐)2 

                       = 𝛾2(𝑣2 − 𝑐2) = −𝑐2= always a constant independent of reference frames, 

So, the norm of 𝑣𝜇 is a Lorentz invariant. 

Alternately, 

 

 

The velocity four vector for the particle in its own frame 

 

 𝑣′𝜇 =
𝑑𝑥′𝜇

𝑑𝜏
           here   𝜇 = 1,2,3,4 

𝑣′𝜇 = (𝑣′1, 𝑣′2, 𝑣′3, 𝑣′4) 

𝑣′𝜇 = (
𝑑𝑥′1
𝑑𝜏

,
𝑑𝑥′2

𝑑𝜏
,

𝑑𝑥′3

𝑑𝜏
,

𝑑𝑥′4

𝑑𝜏
) 

Since, 𝑑𝑥′1 = 𝑑𝑥′2 = 𝑑𝑥′3 = 0 (𝑑𝑥′ = 𝑑𝑦′ = 𝑑𝑧′ = 0)   and    𝑑𝑥′4 = 𝑖𝑐𝑑𝑡′ = 𝑖𝑐𝑑𝜏, 

 

𝑣′𝜇 = 𝛾(0,0,0, 𝑖𝑐) = 𝛾(0⃗⃗, 𝑖𝑐) 

Norm of 𝑣′𝜇 will be  

𝑣′𝜇
2

= 𝑣′1
2 + 𝑣′2

2 + 𝑣′3
2 + 𝑣′4

2 = 0 + 0 + 0 + (𝑖𝑐)2 = −𝑐2 (Same as norm of  𝑣𝜇) 

For both frames, the norm is the same. 

iv) Momentum-energy four vector or four momentum 

The components of this four vector is the product of the components of velocity four 

vector with the rest mass of the particle. 

𝑝𝜇 = 𝑚0𝑣𝜇 = 𝑚0𝛾(𝑣⃗, 𝑖𝑐) = 𝑚(𝑣⃗, 𝑖𝑐) = (𝑚𝑣⃗, 𝑖𝑚𝑐) 

Thus  𝑝𝜇 = (𝑝⃗, 𝑖
𝐸

𝑐
), 

where the relativistic mass of the particle  𝑚 = 𝑚0𝛾, relativistic momentum 𝑝⃗ = 𝑚𝑣⃗ and 

total energy 𝐸 = 𝑚𝑐2. 
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Norm       𝑝𝜇
2 = 𝑝⃗2 + (𝑖

𝐸

𝑐
)

2

  Applying (𝐸2 = 𝑝2𝑐2 + 𝑚0
2𝑐4) 

                       = 𝑝2 − (
𝐸

𝑐
)

2

= −𝑚0𝑐2= always a constant independent of reference frames, 

So, the norm of 𝑝𝜇 is a Lorentz invariant.  

 

• Since linear momentum and energy are coupled in the momentum-energy four vector 

in Minkowski’s formalism, the conservation laws of linear momentum and energy 

appear here as a single law: law of conservation of four-momentum. 

 

v) Force four vector or four-force or Minkowski force 

The components of force four vector are obtained by differentiating the momentum-energy 

four vector w.r.t. the proper time 𝜏, i.e. 

𝐹𝜇 =
𝑑𝑝𝜇

𝑑𝜏
              here 𝜇 = 1,2,3,4, 

which is the eqn of motion in Minkowski spacetime. 

𝐹𝜇 =
𝑑𝑝𝜇

𝑑𝜏
= 𝛾

𝑑𝑝𝜇

𝑑𝑡
= 𝛾 (

𝑑𝑝⃗

𝑑𝑡
,
𝑖

𝑐

𝑑𝐸

𝑑𝑡
) 

Hence,            𝐹𝜇 = 𝛾 (𝐹⃗,
𝑖

𝑐
𝐹⃗. 𝑣⃗) 

(Applying force vector 𝐹⃗ =
𝑑𝑝⃗

𝑑𝑡
  and power 

𝑑𝐸

𝑑𝑡
= 𝐹⃗. 𝑣⃗) 

Norm       𝐹𝜇
2 = 𝛾2 [𝐹⃗2 + (

𝑖

𝑐
𝐹⃗. 𝑣⃗)

2

]   

                       = 𝛾2 [𝐹2 −
1

𝑐2 (𝐹⃗. 𝑣⃗)
2

] 

                       = 𝛾2 (1 −
𝑣2

𝑐2) 𝐹2 = 𝐹2= always a constant independent of reference frames. 

𝐹⃗ is the Newtonian force considering absolute time w.r.t. all inertial frame and in that case, 

the force vector becomes an invariant under Galilean transformation. So, the norm of 𝐹𝜇 is a 

Lorentz invariant. 
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Transformation properties (equations) of momentum 

The motion of a body (of rest mass 0m )  moving with velocity u  in S   frame is observed by 

two observers from S   frame itself and from another inertial frame S . Let S  frame is 

moving with uniform speed V along X+  direction w.r. to S  frame. During the motion of 

frame S  , X  axis remains coincident with X axis and Y   remains parallel with Y  and Z   

axis with Z  axis. If u  be the velocity of the body as observed by the observer from S  frame  

and if m  be its relativistic mass in S  frame and m  be the relativistic mass for the same body 

moving with velocity u  in S   frame, then by the mass variation theorem in Einstein’s 

Relativity 

0

2

2
1

m
m

u

c

=

−

  and  0

2

2
1

m
m

u

c

 =


−

,....................(1) 

where   ˆˆ ˆ
x y zu iu ju ku= + +  2 2 2 2

x y zu u u u= + +  

ˆˆ ˆ
x y zu iu ju ku   = + +  2 2 2 2

x y zu u u u   = + +     

The momenta for the body w.r. to S  and S  frames 

( ), ,x y zp p p p=  and ( ), ,x y zp p p p   =  , 

where 0

2

2
1

x x x

m
p mu u

u

c

= =

−

, 0

2

2
1

y y y

m
p mu u

u

c

= =

−

, 0

2

2
1

z z z

m
p mu u

u

c

= =

−

,  

...................................(2) 

and 

0

2

2
1

x x x

m
p mu u

u

c

  = =


−
 

0

2

2
1

y y y

m
p mu u

u

c

  = =


−

 0

2

2
1

z z z

m
p mu u

u

c

  = =


−

. 

By applying the Lorentz-Einstein transformation equations 

2

2
1

x Vt
x

V

c

−
 =

−

,  y y = ,   z z = ,   
2

2

2
1

V
t x

ct
V

c

−
 =

−

, 
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and also applying the definition of velocity, i.e.  x

dx

dx dtu
dtdt

dt




 = =


,etc., we can derive the 

following velocity addition theorem in Einstein’s Relativity. 

2
1

x
x

x

u V
u

V
u

c

−
 =

−

,       

2

2

2

1

1
y y

x

V

c
u u

V
u

c

 
− 

  =
 
− 

 

,      

2

2

2

1

1
z z

x

V

c
u u

V
u

c

 
− 

  =
 
− 

 

. 

Thus, the components of momentum vector p  for the moving body in S  frame are 

0

2

2
2

11

x
x

x

m u V
p

Vu u
cc

−
 =

 −−

, 

2

2
0

2

2
2

1

11

y y

x

V

m c
p u

Vu u
cc

 
− 

  =
  −−  
 

,        

2

2
0

2

2
2

1

11

z z

x

V

m c
p u

Vu u
cc

 
− 

  =
  −−  
 

. 

...............................(3) 

We are now going to replace 
2

2
1

u

c


−  appeared in RHS in the above equations with an 

expression in  S  frame. To do it, we are exercising the following mathematics. 

( )2 2 2 2 2 2

x y zc u c u u u   − = − + +  

2 2
2 2 2

2 2
2

2 2 2

1 1

1 1 1

x
y z

x x x

V V

u V c c
c u u

V V V
u u u

c c c

      − −    −    = − + +      − − −          

 

( )
2 2

22 2 2

2 2 2

2

1
1 1

1

x y z

x

V V
c u V u u

c cV
u

c

    
= − − + − + −    

      − 
 

 

( )
2

2 2 2 2 2

2 2

2

1
2

1

x y z

x

V
c u V u V u u

cV
u

c

 
= − + − − + 

   
− 

 

 

( )
2 2

2 2 2 2 2

2 2 2

2

1
1 2

1

x x x

x

V V
c u u V u V u u

c cV
u

c

   
= − − + − − −   

      − 
 
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After simplifying 

2

22 2

22 2

2

1

1 1

1 x

V

cu u

c cV
u

c

 
− 

   − = − 
   
− 

 

 

Applying it along with the mass-energy equivalence principle 
2E mc= ,  mass variation 

formula 0

2

2
1

m
m

u

c

=

−

 from (1) and expressions of the components , ,x y zp p p  from (2) in the 

three expressions for components , ,x y zp p p   in (3), we have 

2

2

2
1

x

x

V
p E

cp
V

c

−
 =

−

, y yp p = , z zp p =  

The inverse of these transformation relations can be obtained easily by changing the primed 

by unprimed and unprimed by primed quantities and V  by V− , i.e. ( ) ( ), ,p E p E   and

V V− . 

2

2

2
1

x

x

V
p E

cp
V

c

 +

=

−

, y yp p= , z zp p= . 

Transformation properties (equations) for Energy 

The motion of a body (of rest mass 0m )  moving with velocity u  in S   frame is observed by 

two observers from S   frame itself and from another inertial frame S . Let S  frame is 

moving with uniform speed V along X+  direction w.r. to S  frame. During the motion of 

frame S  , X  axis remains coincident with X axis and Y   remains parallel with Y  and Z   

axis with Z  axis. If u  be the velocity of the body as observed by the observer from S  frame  

and if m  be its relativistic mass in S  frame and m  be the relativistic mass for the same body 

moving with velocity u  in S   frame, then by the mass variation theorem in Einstein’s 

Relativity 

0

2

2
1

m
m

u

c

=

−

  and  0

2

2
1

m
m

u

c

 =


−

, 

where   ˆˆ ˆ
x y zu iu ju ku= + +  2 2 2 2

x y zu u u u= + +  
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ˆˆ ˆ
x y zu iu ju ku   = + +  2 2 2 2

x y zu u u u   = + +     

By the mass-energy equivalence principle 
2E mc= , the energy of the body w.r. to frame S

and that of  the body w.r. to frame S  are   

2 20

2

2
1

m
E mc c

u

c

= =

−
  

2 20

2

2
1

m
E m c c

u

c

 = =


−

 

Hence, energy transformation equation 

2

2

2

2

1

1

u

c
E E

u

c

−

 =


−

. 

We are now going to replace 
2

2
1

u

c


−  appeared in RHS in the above equations with an 

expression in  S  frame. To do it, we are exercising the following mathematics.  

(same as the previous topic already discussed) 

We have arrived at 

2

22 2

22 2

2

1

1 1

1 x

V

cu u

c cV
u

c

 
− 

   − = − 
   
− 

 

 

Applying it in energy transformation relation 

1

2 2

2 2 2

2 2 2

2

1

1 1

1 x

V

c u u
E E

c cV
u

c

−

  
−  

    = − −     
−  

  

 
2

2

2

1

1

x

V
u

c
E

V

c

 
− 

 =

−

 

Using  
2E mc=  and x xp mu= , the final transformation relation for energy is obtained as 

below. 

2

2
1

xE p V
E

V

c

−
 =

−

 

**************** 
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Relativistic dynamics, Relativistic Mass 

In Newtonian Mechanics, the mass of a body is assumed to be a constant physical quantity 

independent of its speed w. r. to observers. By Newton’s second law of motion, under the 

action of a constant force, the body moves with constant acceleration and if the body is 

constantly acted upon by the force for a longer time, the body keeps picking up of velocity 

and could finally move with speed greater than the speed of light c in free space. This goes 

vehemently against the finding in the Special Relativity Theory that the speed c is the natural 

upper limit for all objects. This is happening only when the influence of the force would 

gradually become less and less as the speed approaches c and would ultimately vanish. This 

view leads to the increase of inertia with speed, tending to infinity as the speed of the body 

approaches c and there would be practically no acceleration in the sense of velocity change. 

Since inertia is proportional to mass (larger the mass, larger is the inertia), the mass has to be 

increased with speed to infinity as speed approaches c . 

The above conclusion can be mathematically stated as follows- 

( )0um m f u=  

where   0m =mass of the body at rest ( )0u = , called rest mass 

um =mass of the body moving with speed u, called relativistic mass 

( )f u →a function of speed u of the body such that 

 ( ) 1   as    0f u u→ →  

and           as    u c→ →   

In 1904, Lorentz for the first time gave the mass variation formula as 

0

2

2
1

u

m
m

u

c

=

−
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Derivation of mass variation formula 

According to the Relativity Principle, the physical laws and principles are invariant in all 

inertial frames and same is the case for principle of conservation of linear momentum. If we 

suppose that Newtonian concept about constancy of mass with speed is correct, the said 

conservation principle valid in one inertial frame is found to be invalid in another inertial 

frame under Lorentz Einstein transformation. It simply indicates that the Newtonian concept 

of absolute mass is totally wrong, actually mass is a relative concept. It can be theoretically 

shown by studying a dynamical collision problem from two different inertial frames.   

We consider a perfectly elastic collision process between two identical bodies 1 and 2 of 

mass m/ moving with equal speed u/ in opposite directions in S/ inertial frame moving with 

uniform speed V along +X-direction w. r. to another inertial frame S as shown in the figure. 

After collision, they get coalesced and comes to rest in S/ frame.   

 

The observer in S frame is observing the same collision process and according to him, body 1 

of mass m1 and body 2 of mass m2 are moving in opposite directions with the speed u1 and u2 

respectively and after collision, they get stuck together and start moving with speed V along 

+X-direction. By the relativistic velocity addition formula, we can write-  

1 2

2 2

V V
    and     

1 1 ( )

u u
u u

V V
u u

c c

 + − +
= =

 + + −

 

Applying the principle of conservation of linear momentum in the collision process as 

observed from the S frame, we have 

1 1 2 2 1 2( )m u m u m m V+ = +  
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Now putting the expressions for u1 and u2 and then simplifying, we have the mass ratio as 

2
1

2
2

1

1

V
u

m c
Vm

u
c

+

=

−

. 

To express this mass ratio in terms of u1 and u2 in S frame, we must evaluate 
2

V
u

c
using the 

above velocity formulae. Since 

2 2

2 2

1 22 2
1 1 4 V

V V
u u u u u

c c

   
  + − − =   

   
, 

we can mould it to the form of a quadratic equation of 
2

V
u

c
  as follows 

( )
( ) 

( )( )
( )

2
2 2 2

1 22 2 2

1 2
2 2 2 2

1 2 1 2

2 2 2

1 2

2 2
2 2

      4

2

u u c
u u c

u u u uVu

c u u

+ −
− + − 

− − −
=

−
. 

Since no material body can move with the speed equal to c, 
2

1
Vu

c


  and therefore the –ve 

sign is taken into consideration. After simplification, we have 

( )( )
( )

2 2 2 2 2 2 2

1 2 1 2

2 2 2

1 2

2 2c u u c u c uVu

c u u

− − − − −
=

−
. 

Thus, 

2

2

2

1

2
1

2

2

1

1

m c

u

m u

c

−

=

−

. 

We suppose that that the body 2 was at rest before collision w.r. to the observer in S frame. 

So, putting 2 0u =  and 2 0m m= (which is again the rest mass for the body 1) in the above 

equation, the mass ratio reduces to the form 
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1

1

0

2

2

1

1
m u

m

c

=

−

. 

Dropping the index 1 from the above equation, we can make it more general for any object of 

relativistic mass m moving with the speed u relative to a stationary observer as 

0

2

2
1

m
m

u

c

=

−

. 

• The variation of mass with speed of a material particle becomes quite significant at 

high values of u. It can be shown by drawing a theoretical graph of 
0

m

m
 against 

u

c
 

(since 

1
2 2

0

1
m

m c

u
−

  
= −  

   

 ).   

 

• The variation of mass with speed was first confirmed by Bucherer (1908), when he 

observed that the ratio of charge to the mass, i.e. 
e

m
 of an electron is smaller for fast 

moving electrons than that for the slow moving electrons. It indicates the increase of 

mass with speed of the electrons as the charge is an invariant quantity in Relativistic 

Electrodynamics. 
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Measured value of 

u

c
 

Measured value of 

e

m
 in C/kg 

0.3173 1.661 X 1011 

0.3787 1.630 X 1011 

0.4281 1.590 X 1011 

0.5154 1.511 X 1011 

0.6870 1.283 X 1011 

  

Working Principle of the experiment:  

The magnetic force mF  exerted on a particle of charge q projected normally into a uniform 

magnetic field of magnetic flux density B provides the necessary centripetal force cF  to 

revolve in a circular path of radius r. Thus  

2

m c

mu
F F quB

r
=  =  

   
q u

m rB
 =  

The electrons produced by any source (e.g. radioactive beta decay) are made to pass through 

a velocity selector so that a collimated beam of electrons moving with certain speed can be 

obtained. Those electrons are injected normally into a uniform magnetic field  

• The fine structure of Hydrogen spectrum could be well explained only when 

relativistic mass of the electrons revolving round the nucleus is taken into 

consideration along with some other factors.  

Mass-energy equivalence principle 

In classical mechanics, the kinetic energy (KE) gained by a moving body is equal to the work 

done on the body. It can be proved very easily by considering the displacement of a body of 

constant mass m from A to B along +X-direction in space under the action of a variable force

xF . 
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B B

x

A A

W dW F dx= =   

      ( )
B

A

d dx
mu dt

dt dt
=   

       
B

A

u

u

m u du=     

(since m is assumed to be an absolute quantity in Classical Physics) 

      ( )2

2

B

A

u

u

m
d u= 

2

2

B

A

u

u

m
u =    

      
2 21 1

2 2
B Amu mu= −  

( ) ( ) Work done   
B A

W KE KE = −  

If work is done on the body (i.e. for +ve work done), the body will gain KE and if the body 

itself does work against a force (i.e. for -ve work done), the body will lose KE. Physically 

also it is true, but there is a problem in the mathematical calculation under the light of 

relativity. As the body is moving under the action of force, magnitude of the velocity of the 

body is changing with time and so mass of the body never be a constant and so it could not be 

brought out of the integration. So, we again repeat the same calculation considering mass 

variation formula as follows. 

( ) ( ) ( ) ( )Change in KE Work done 
B A

K KE KE W = − =  

    

B B

x

A A

dW F dx= =   

  ( )
B

A

d dx
mu dt

dt dt
=   
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  ( ) 

B

A

u d mu=   

( )  

B

A

u u dm m du= +  

( ) ( ) ( )2   

B

B A

A

K KE KE u dm mu du = − = +  

Using the mass variation formula 

2 2 2 2 2 2

0m c m u m c− =  

And taking the total differential in both sides of the above equation and then simplifying, we 

have  

2 2   u dm mu du c dm+ = . 

( ) ( ) 2  
B

A

m

B A

m

K KE KE c dm = − =   2 B

A

m

m
c m=  

(Here mA and mB are relativistic mass of the body at A with speed uA and at B with speed uB) 

( ) ( ) ( )   Change in KE 
B A

K KE KE  = − ( ) ( )2 2

B Am m c m c= − =   

i.e. the KE gained / lost by a moving body is equal to c2 times the increased / decreased 

in mass of the body. 

If we suppose that the body starts from rest  at A ( )0Au = , its initial KE will obviously be 

zero, i.e. ( ) 0
A

KE =  and correspondingly mass will be equal to its rest mass, i.e. 0Am m= . 

Thus the above relation becomes 

( ) ( ) 2

0BB
KE m m c= − , 

Which can be put into a general form by dropping the suffix B from the above expression as  

( ) 2

0KE m m c= −  

2 2

0mc KE m c = +  
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Here Einstein interpreted 
2mc  as the total energy E . If the body is at rest, KE vanishes and 

the body is still possessing 2

0m c amount of energy. This energy is defined as internal or 

intrinsic or rest energy of the body. The rest energy 2

0m c includes all the possible type of 

energies (e.g. intermolecular potential energy, molecular translational energy, molecular 

vibrational energy, molecular rotational energy (thermal energy), electrical energy, etc.). 

Thus,  

Total Energy = KE + Rest Energy 

Or,         2 2

0E mc KE m c= = +  

  Or,         2E mc=  

2Total Energy (Relativistic mass)  c =  , 

which is known as mass-energy equivalence principle. It states that mass and energy are 

not two independent entities, they are different aspects of the same thing. According to 

the principle mass can be created or destroyed, but when this happens, an equivalent 

amount of energy simultaneously vanishes or comes into being. 

• The principle states the universal equivalence of mass and energy. The mass and 

energy of the universe are not conserved separately, but they are conserved as a 

whole. In classical mechanics conservation of mass and energy are treated as two 

basic principles and it is supposed that they are satisfied in any process in the reign of 

classical physics. 

• In our day to day life, the conversion of energy to mass and vice-versa are not 

observed frequently, because this conversion is again restricted by some other very 

fundamental conservation principles, e.g. conservation of lepton number, conservation 

of baryon (proton +neutron) number, etc. According to the mass-energy equivalence 

principle, if 1mg of sand is converted to energy, we have to have 
109 10 J of energy. 

But the conversion of the whole mass into energy is not permitted by the above said 

conservation principles, because if the whole amount of sand gets converted to 

energy, the baryon number (total number of proton + neutron) will not conserved.  

• We could not use the Newtonian expression for KE of a body moving with high 

speed comparable to the speed c as  
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21

2
KE mu= , 

where m is the relativistic mass of the body moving with speed u ( )c . For 

understanding the meaning, we have to do the following simple mathematics. 

( )2 2

0 0KE E m c m m c= − = −  

1
2 2

2

2
1 1

u
mc

c

  
 = − − 
   

 

2
2 2

2 2

2

3
2

2

1 1
1

2 8
1

3
              ..............

48

u u

c c
mc

u

c

   
  − −  
   

= −  
   

− −   
   

 

2 4

21 3 1
1 ..............

4 48 2

u u
mu

c c

    
= + + +    

     

 

In relativistic mechanics,  u c  and so we can not neglect 
u

c
 and its higher order 

terms in the above equation. Hence, in relativistic mechanics 

21

2
KE mu . 

• Now we repeat the same calculation in classical limit when 1
u

c
 , the speed of the 

body is very much smaller than c, e.g. a cricket ball moving with speed of 100 km/h 

28 m/s. The speed of light in free space is 
83 10 m/s and so 0.0000000933

u

c
= . 

      
2

0KE E m c= − ( ) 2

0m m c= −  

1
2 2

2

02
1 1

u
m c

c

−  
 = − − 
   
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2
2 2

2 2

2

03
2

2

1 3
1

2 8
1

15
               ....................

48

u u

c c
m c

u

c

   
  + +  
   

= −  
   

+ +   
   

2
2 2

2

02 2

3 15 1
1 ....................

4 24 2

u u
m u

c c

    
= + + +    
     

 

Hence in classical limit (i.e. in Newtonian Mechanics) 
2

0

1

2
KE m u=  

• Concept of  Relativistic Mass 

In classical physics, the mass of the bodies are assumed to be constants and as a 

consequence, in a two body collision problem under action–reaction forces, the 

quantity 1 21 2m u m u+ (total linear momentum) remains the same before and after 

collision, which is the law of conservation of linear momentum of classical 

mechanics. If the classical concept of mass is applied in Special Relativity, it is seen 

that the above mention quantity may increase or decrease after a collision. But the 

Lorentz-Einstein transformation shows that there is a corresponding quantity   

1 2
1 2

2 2

1 2

2 2
1 1

m m
u u

u u

c c

+

− −

  remains conserved. If the quantity 
2

2
1

m

u

c
−

is defined as 

mass, then the total linear momentum of the process would again be conserved. This 

mass is more correctly called as relativistic mass of the body moving with speed u. At 

rest, when u=0, this mass is said to be rest mass and it is then denoted by 0m .   

 

• Concept of Rest Mass Energy and Rest Mass of a body 

KE of a body due to its ‘as a whole motion’ (translational + rotational + vibrational) 

may be regarded as external energy and by subtracting it from the total energy

2
E mc= we can get the rest mass energy 

2

0m c or total internal energy which includes 

energies due to all molecular motions (thermal energy), intermolecular potential 

energies, atomic potential energy, nuclear potential energy, etc. So,   
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0 2

1
m

c
=  (KE due to molecular motions + intermolecular PE + atomic PE +  nuclear 

PE +……………) 

 Internal energy of a body does not remain constant for ever, because during heat 

transfer, molecular KE changes; chemical reaction changes intermolecular PE and 

atomic PE, nuclear reaction changes nuclear PE, etc. Therefore, rest mass of a body 

never be a constant. Greater the internal energy, greater is the rest mass. In relativistic 

picture, the rest mass reflects the internal energy of an object. So, a potato becomes 

heavier when it is heated up. Similarly a compressed spring with additional PE is 

heavier than a released spring.  

Application of mass-energy equivalence principle 

1) In the formation of a nucleus, the nucleons (proton + neutron) have lost some amount 

of their mass (mass defect) and that lost mass gets converted to energy, called 

binding energy (BE), which is required to bound all the nucleons together in a small 

space. This BE is equal to c2 times the lost mass. 

( )2

p p n n nuclBE c n m n m m =  + −
 

 

Where pn  and nn  are respectively the number of proton and neutron and pm , nm  and 

nuclm  are respectively the mass of proton, neutron and nucleus. 

 

 

2) In case of ( e e− +− ) pair production in cosmic ray shower, energy is found to be 

converted to mass and in ( e e− +− ) pair annihilation process, mass gets converted to 

energy.  

3) In nuclear fission reaction, the heavy nucleus like uranium may form fission 

fragments. The total rest mass of all the fragments is less than that of the original 
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heavy nucleus. The decrease in mass m  during the fission appears in the form of 

energy equal to ( ) 2m c as given by the mass-energy equivalence principle.  

235 1 141 92 1

92 0 56 36 03U n Ba Kr n Energy+ → + + +  

 

The liberation of tremendous amount of energy due to conversion of mass into energy 

in an uncontrolled chain reaction is the basic principle of atom bomb. And in 

nuclear reactor, it is allowed to initiate in a controlled manner. 

4) When two light nuclei like hydrogen or its isotopes combine to form a heavy nucleus 

undergoing the process of fusion, a tremendous amount of energy is released, which is 

the basic principle of hydrogen bomb. 

2 2 3

1 1 2H H He n Energy+ → + +  

The degree of temperature and pressure to carry out the process is really high. Why? 

The source of heat and light radiation of a star is solely the nuclear fusion reaction 

which is occurring at its core.   

• Einstein’s law displaced the old law of the conservation of mass, worked out by 

Lavoisier, which says that matter, understood as mass, can neither be created nor 

destroyed. In fact, every chemical reaction that releases energy converts a small 

amount of mass into energy. This could not be measured in the kind of chemical 

reaction known to the 19th century, such as the burning of coal. But nuclear reaction 

releases sufficient energy to reveal a measurable loss of mass. All matter, even when 

at "rest," contains staggering amounts of energy. However, as this cannot be observed, 

it was not understood until Einstein explained it. 

Relativistic momentum 

The relativistic mass of a body multiplied it by its velocity is defined as relativistic 

momentum in Special Relativity, i.e. 

0

2

2
1

p u u
m

c

m
u

−

= = . 

Relation between relativistic momentum and KE 
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Using the mass variation formula in the expression 2 2

0mc KE m c= +  and then squaring both 

sides and simplifying and keeping the terms involving KE (K) in one side and then applying 

the concept of relativistic momentum, we have 

2 2 2

02p c k km c= + , 

whereas in classical physics, it is in the form 

2

0

1

2
K m u= . 

Relation between relativistic momentum and total energy  

Squaring both sides of the expression 2 2

0E mc KE m c= = +  and then applying the equation 

2 2 2

02p c k km c= + , we have got the following expression 

2 2 2 2 4

0E p c m c= +  

Lorentz invariant 

If p and E are the relativistic momentum and energy of a body of rest mass 0m in S inertial 

frame and p’ and E’ are the corresponding values with respect to another inertial frame S’ 

moving with certain uniform velocity w. r. to S frame, then by the above equation 

2 2 2 2 2 2 2 4

0E p c E p c m c − = − =  

Since 2 4

0m c is a constant quantity independent of the frame of reference, the quantity 

( )2 2 2E p c−  must be an invariant under Lorentz-Einstein transformation, that is to say that 

the quantity remains invariant in all inertial frames S, S’, S’’, etc. Such types of quantities, 

which remain unchanged under Lorentz-Einstein transformation, are called Lorentz invariant. 

Conceptually they are similar to Galilean invariants like space interval, time interval, 

acceleration, force etc., which remain invariant under Galilean transformation. So, invariants 

are always subject to particular transformations. 

Zero Rest Mass 

The relation between total energy E and momentum p in the relativistic mechanics is 
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2 2 2 2 4

0E p c m c= + . 

From the mass-energy equivalence principle 2E mc=  and momentum and velocity relation 

p mu= , we have 

2

2

mc
p u

c
=

u
pc E

c
 = , 

For light waves or photons moving with the speed c, the above relation becomes 

E pc= . 

Both the above relations for total energy of a photon will be mathematically consistent only 

when the rest mass of photon vanishes, i.e. 0 0m = . So, we conclude that any particle 

moving with speed equal to c must have zero rest mass or in the other way we can state 

as all the particles with zero rest mass propagate with the speed of light c in free space.  

The above mathematics also reveals that material particles with finite rest mass, how much 

small it may be, always move with speed less than that of light in free space.  

For a material particle, 0 0m 
 

So, 
2 2 2 2 4

0E p c m c= +
 
⇒ 𝐸 > 𝑝𝑐 

Again, p mu=  

2

2

mc
p u

c
=

 
and hence 𝑝𝑐 = 𝐸 (

𝑢

𝑐
)  

Since,  𝐸 > 𝑝𝑐, so   𝑢 < 𝑐 

It therefore indicates indirectly that for material particle there is a limiting speed equal to c. 

 

 

 

************* 
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Michelson-Morley Experiment 

Ether 

Newton (1643-1727) proposed the corpuscular theory of light, while Huygens (1629-1695) 

put forward the wave theory of light. Initially Newton’s theory was welcomed by all, but the 

work of Young and Fresnel on interference and diffraction of light showed clearly the 

validity of wave theory, completely rejecting the Newton’s theory. The concept of light as a 

wave process in a medium thus established, and the theory of light was reduced to the theory 

of oscillations in a medium that fills the entire universe.  

Ether Hypothesis  

The medium, that pervades throughout the whole universe and helps the light to propagate 

with the speed equal to c through it, was hypothesized as the ether.  

Absolute velocity 

The ether medium or ether frame remains stationary in space and the motion of a body 

relative to the ether was supposed to be the absolute, and relative w. r. to other moving 

frames. The velocity of a body w. r. to ether was called the absolute velocity of the body and 

it was supposed to be independent of the motion of other bodies. 

If we know the absolute velocity (𝑉⃗ 𝐴) of a body A w. r. to ether, and if the relative velocity 

(𝑉⃗ 𝐵𝐴) of another body B w. r. to the body A can be measured by doing an experiment, then 

the absolute velocity (𝑉⃗ 𝐵) of the later one could be found out ( since  𝑉⃗ 𝐵𝐴 = 𝑉⃗ 𝐵 − 𝑉⃗ 𝐴). That is 

the trick brilliantly applied by Michelson and Morley in his famous optical experiment. 

Galilean Relativity, Maxwell’s theory of electromagnetism and findings of 

the M-M Experiment  

If we accept both Galilean Relativity and Maxwell’s theory of electromagnetism as basically 

correct, Maxwell’s wave equation for propagation of light only holds in a unique privileged 

frame where the speed of light in vacuum is equal to c. This absolute frame was hypothesized 

as the ether frame, the ether medium that pervades the whole universe and it is also essential 

for the propagation of light. 
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For detection of that absolute frame, i.e. the ether medium, Physicists performed optical 

experiments. Some of the famous experiments are Astronomical Aberration Experiment, 

Fizeau’s Experiment, Michelson-Morley (M-M) Experiment, etc. 

Out of all other experiments, M-M experiment (1881 - 87) was able to play a decisive role. It 

was the acid test for detection of ether medium. The American Physicist A. A. Michelson, 

later aided by E. W. Morley carried out a series of experiments to measure the speed of earth 

w. r. to ether assuming that the speed of light is equal to c w. r. to ether as given by 

Maxwell’s theory and there is a ether wind blowing past the earth as the earth is moving 

through ether (just like the air wind blowing past a motorcyclist pushing his hair in backward 

direction) and this ether wind would alter the speed of light in the similar way the air wind 

effects on the speed of sound. They thought that they could detect the change of speed of 

light on earth due to the effect of ether wind and from this, they could measure the speed of 

earth w. r. to ether. If they could, then it would establish the existence of ether. But they got a 

null result (negative result), they could not measure the speed of earth through ether and 

therefore they were unable to establish that there is ether. It was totally an unexpected result 

and Michelson thought that somehow the ether wind disappeared during the experiment and 

so they got a –ve result. So, they performed the same experiment at an interval of six months 

when the direction of motion of the earth in its orbit became just opposite to that six months 

back. But their experiment again yielded a null result. Michelson and Morley improved the 

resolving power of their apparatus by modifying its design and performed the experiment at 

different altitudes, at different seasons in a year expecting the effect of ether wind on light 

propagation, but every time they got null result. They were unable to measure the speed of 

earth through ether. The conclusion drawn from their experimental result is that since the 

speed of earth could not be measured w. r. to ether, the existence of ether cannot be 

confirmed and so the ether concept could be discarded, there is no meaning of hypothesing an 

absolute ether frame where the light moves with the constant speed equal to c. And it is 

established beyond doubt that the speed of light through free space is simply a constant equal 

to c irrespective of the motion of source and observer. (The situation is like the measuring the 

speed of a moving boat w. r. to the still water in a lake by performing an experiment on the 

boat, assuming that the experimentalist cannot see the water or cannot feel the presence of 

water in the lake through any other means. If the person on the boat cannot measure the speed 

of the boat w. r. to the still water, he readily comes to the conclusion that there is no water in 

the lake or if there is water, the existence of water is meaningless to him.!!! ) 
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Aim of the experiment: 

Michelson and Morley carried out a series of experiments just to measure the speed of earth 

through the ether medium assuming that there was a ‘ether wind’ blowing past the earth, as 

the earth is moving through the ether and this ‘ether wind’ would alter the speed of light in 

the similar way the air wind effects on the speed of sound. 

 

Michelson and Morley used an interferometer of remarkable sensitivity invented by them. In 

the experiment, the light from the source S is split into two mutually perpendicular beams by 

a half-silvered plate (on the back) P1. These two beams are made to reflect from two mirrors 

M1 and M2, which are placed normal to their paths at almost equal distances from the plate P1. 

The mirrors M1 and M2 are optically flat and heavily silvered on the front face to avoid 

multiple reflections (to minimise the amount of absorbed energy on the glass plate) and are 

arranged right angled to each other. To make the optical paths for the two beams I and II 

equal through glass, a compensating plate P2 identical with the plate P1 but not silvered is 

arranged parallel to plate P1 in the path of beam I. The two beams I and II, after suffering 

reflections on the mirrors M1 and M2 respectively are allowed to reunite and the reunited 

beam is observed through a telescope T and an interference pattern on the field of view of the 
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telescope is observed. The time difference between the two beams I and II that arises due to 

their up and down journey across the distances l1 and l2 respectively is the very cause of 

formation of interference pattern on the field of view of the telescope. 

Let us suppose that the earth along with the whole experimental set up is moving with speed 

V w.r. to the ether medium in the direction P1 to M1 and so ‘ether wind’ blows with speed V 

in the direction from M1 to P1. The ether wind effects the propagation of light beam I and so 

the speed of light beam I in its up journey becomes (c-V) and in its down journey, it is (c+V). 

(imagine the effect of wind on sound wave). For the beam II, the speed of light becomes 𝑐/ =

√𝑐2 − 𝑉2  in the perpendicular directions P1⇄ M1 w.r. to the direction of motion of earth 

through the ether.   

 

If t1 and t2 be the time intervals taken by the two beams I and II respectively for their up and 

down journey between the plate P1 and respective mirror M1/M2, then 
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𝑡1 =
𝑙1

𝑐 − 𝑉
+

𝑙1
𝑐 + 𝑉

=
2𝑙1
𝑐

(
1

1 −
𝑉2

𝑐2

) 

𝑡2 = 2
𝑙2

√𝑐2 − 𝑉2
=

2𝑙2
𝑐

(
1

1 −
𝑉2

𝑐2

)

1
2⁄

 

And hence the difference in time at the time of reuniting of the two beams at the backside of 

the plate P1 is  

Δ𝑡 = 𝑡1 − 𝑡2 =
2𝑙1
𝑐

(
1

1 −
𝑉2

𝑐2

) −
2𝑙2
𝑐

(
1

1 −
𝑉2

𝑐2

)

1
2⁄

 

If we suppose V=0 i.e. no ether wind, then also Δ𝑡 ≠ 0 and still the interference fringe pattern 

would be observed through the telescope, since this Δ𝑡 is the actual factor that governs the 

fringe pattern. So, observation of interference pattern does not confirm the effect of ether 

wind on the propagation of light wave and so, the existence of ether. 

To observe the effect of ether wind, the whole assemblage is given a 900 rotation in its own 

plane and the roles of the two beams are thereby got reversed. For this resulting situation, 𝑡1
/
 

and 𝑡2
/
 are the time intervals required by the beam I and II respectively for their up and down 

journey. So 

𝑡1
/
=

2𝑙1
𝑐

(
1

1 −
𝑉2

𝑐2

)

1
2⁄

 

𝑡2
/
=

2𝑙2
𝑐

(
1

1 −
𝑉2

𝑐2

) 

And the difference in time 

Δ𝑡/ = 𝑡1
/
− 𝑡2

/
=

2𝑙1
𝑐

(
1

1 −
𝑉2

𝑐2

)

1
2⁄

−
2𝑙2
𝑐

(
1

1 −
𝑉2

𝑐2

) 
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Since  Δt/ ≠ 0, an interference pattern is again observed through the telescope after giving 

900 rotation to the whole assemblage. 

Since  Δ𝑡 ≠ Δt/ , the fringe system would appear to be shifted laterally after giving 900 

rotation. Theoretically, the number of fringes shifted in the fringe system is given by  

𝛿𝑛 = (
𝑙1 + 𝑙2

𝜆
)
𝑉2

𝑐2
 

But such shift to the fringe system is not bserved. 

 

 

Result of Michelson and Morley Experiment: 

If a shift of fringe pattern is observed, the speed of ether wind and so the speed of earth w.r. 

to ether (i.e. V) can be calculated by measuring the number of fringe got shifted (𝛿𝑛) after 

giving 900 rotation. But Michelson and Morley observed no such shift of fringe patter after 

giving 900 rotation of the whole experimental set-up, and so they were unable to calculate the 

speed of the ether wind and so the speed of earth w.r. to ether (i.e. V), that is to say they got 

a null result (or negative result). They improved the resolving power of the apparatus by 

modifying its design and also perform the same experiment at different altitudes at different 
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seasons in a year expecting the effect of ether wind on the speed of light, but every time they 

ended up with a null result.  

Conclusion: 

Michelson and Morley could not observe any lateral shifting of the fringe pattern after giving 

900 rotation of the whole experimental set-up. It happens only when speed of light in free 

space remains constant irrespective of the motion of the observer as well as of the source. It 

indirectly means that no ether medium is required, where only the speed of light was assumed 

to be equal to c. And so, the ether concept is thereafter discarded. 

Some fragile attempts made to restore the status of ether 

The conclusion drawn from M-M experiment was not welcomed by the Physics community 

at that time for the general reason that the light needs a medium for propagation and ether 

provides that medium. Michelson himself was not happy with the conclusion and tried to 

explain the –ve result of his experiment by proposing a hypothesis, called ‘ether drag 

hypothesis’. According to the said hypothesis, Michelson assumed that the whole volume of 

ether in the surroundings of earth was constantly dragged by the earth as the earth is moving 

through the ether medium, if it were so, there would not be any ether wind on the surface of 

earth and there were no question of alternation of the speed of light by ether wind. Because of 

that, Michelson and Morley got null result. 

 

But the hypothesis was unable to support the M-M experimental result. Because, the 

hypothesis has an inherent defect as it goes against the idea of a calm ether sea at absolute 

rest. Again the hypothesis could not be established by some other experiments (e.g. Bradley’s 

Astronomical Aberration Experiment, Fizeau’s experiment, etc.). 

Though the physicists had to keep aside the ether drag theory, still they were not brave 

enough to accept the null result and constantly they were trying to formulate new theories to 
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defend the –ve result and thereby try to establish the existence of ether. One of the attempts 

was made by FitzGerald. He proposed the ‘length contraction hypothesis’, according to 

which all material bodies moving w .r. to stationary ether with speed V got contracted by the 

factor 

2

2
1

V

c
−  in the direction of motion, while the dimension perpendicular to the direction 

of motion remained unaltered. If we apply this contraction to the M-M experiment, then the –

ve result can be explained beautifully. But the experiment performed by Kennedy and 

Thorndike showed the null effect of FitzGerald contraction. So, -ve result remained 

unexplainable in presence of ether.   

The final blow on ether   

At the first glance, all the hypotheses proposed for the sake of ether are found to explain the 

null result of M-M experiment in presence of ether, but they are all ad hoc in nature and so 

they are far from convincing. From the work of Poincare/ and Einstein in the development 

of relativity theory, it was revealed that there is absolutely no place for those hypothesis and 

the physicists ultimately have to accept that no absolute frame like ether is required to hold 

the Maxwell’s equations for electromagnetism and speed of light is a constant equal to c w. r. 

to any frame.       

 

 

 

************ 
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Minkowski’s four dimensional continuum 

In classical physics space and time are independwnt and so when space coordinates x, y and z 

of one inertial frame is transformed to another, the time coordinate t remains unaffected. In 

relativity, however, space and time are not independent. The time coordinate of one inertial 

frame depends on both the space and time coordinates of another inertial frame. By Lorentz-

Einstein transformation equation  

2

2

2
1

V
t x

ct
V

c

−
 =

−

, 

it is found that space and time get entangled in relativity and  H. Minkowski was the first to 

suggest that it is judicious to treat both of them together and he also clearly showed how this 

could be done.    

It is convenient to express the results of Special Relativity by regarding events as occurring in 

a four-dimensional continuum, called Minkowski space or spacetime continuum. It is 

briefly referred as ‘four-space’ or ‘world’. The coordinates chosen (x, y, z & t) form an 

orthogonal coordinate system in for dimensions (3-space + 1-time). A point representing an 

event in Minkowski space is called a ‘world point’. As a particle moves in real space with 

time, its successive world points trace out a curve in that world, called ‘world line’.  

Physical laws on the interaction of particles can be thought of as the geometric relation 

between their world lines. In this sense, Minkowski may be said to have  geometrized 

physics.  

For geometrical representation, we consider only one space axis x and the time axis t 

perpendicular to x-axis. Such a simplification does not lose any generality. For convenience, 

x-axis is taken as a horizontal one and t-axis is vertical. It is convenient to keep the 

dimensions of the coordinates x and t the same and for that time t is multiplied by the 

universal constant c (speed of light in vacuum). By putting ct=w, the Lorentz-Einstein 

transformation equations become- 

2

2
1

x Vt
x

V

c

−
 =

−

        ( )x x  = −  
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and  

2

2

2
1

V
t x

ct
V

c

−
 =

−

         ( )x    = − , 

where 
2

2

1

1
V

c

 =

−

 and 
V

c
 = . There is a symmetry in the form of the above equations in 

the sense that we can go from one equation to the other by simply replacing one coordinate 

with the other ( x  ). 

Diagrammatic representation of inertial frames under Minkowski’s notation:   

 

To represent the S inertial frame geometrically, we will draw the x and w axes 

perpendicularly to each other and the motion of a particle is represented by a world line. The 

tangent to the world line at a point P makes an angle 𝜃 with the w-axis. So the slope of the 

tangent with w-axis at P is given by 

1
tan

dx dx u

d c dt c



= = = , 

where u is the speed of the particle at P. Since 1
u

c
  for all material particle, tan 1   and 

hence
045  . It means the tangent to the world line at any point is inclined at an angle less 

than 
045  with the w-axis (greater than 

045  with the x-axis). 
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For light wave, u=c and so tan 1 =
045 = . It means that the world line of light wave is a 

straight line making an angle 045  with either of the axis.  

Diagrammatic representation of a moving inertial frame w.r. to another 

inertial frame under Minkowski’s notation:   

 

To represent the inertial frame S/ moving with respect to S frame with uniform speed V along 

+x-direction, we have to take the help of equations   

( )x x  = −   and   

( )x    = − . 

To draw the x/-axis for S/ frame, we apply the following trick. Since 0 =  along x/ axis, the 

second equation yields x = , which means that x/-axis is a straight line passing through 

the origin of ω-x diagram and makes and angle φ with x-axis such that its slope tan = . 

Again along  -axis in S/ frame, 0x =  and hence from the first equation, we get 
1

x


= , 

which means that  -axis is a straight line passing through the origin of ω-x diagram making 

an angle with x-axis such that its slope tan
1




 = . 

Since tan =  and tan
1




 = ,  
2


  = − , and it indicates that the angle made by x/-axis 

with x-axis is exactly equal to the angle made by ω/-axis with ω-axis. 
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The figure shows that ω/- x/ system is a non-orthogonal coordinate system. Since x/ and ω/ 

axes are obtained by using Lorentz-Einstein transformation equations, it can be said that the 

Lorentz-Einstein transformation transforms an orthogonal system to a non-orthogonal one. 

Use of Minkowski’s diagram  

a) Simultaneity is relative? Explain 

 

We suppose that two events 1 and 2 occurred simultaneously at the instant t/ (=t1
/= t2

/) in the 

moving frame S/ at two points x1
/ and x2

/. But those two events are appeared to occur at t1 and 

t2 from the S frame and t1< t2, i.e. event 1 occurred first, after than event 2 occurred. It shows 

that the events which are simultaneous in S/ frame are found to have time sequence in another 

frame S. It means that simultaneity is not an absolute concept. Two simultaneous events for 

one frame never be simultaneous for another frame.  
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The same conclusion can be drawn by considering two simultaneous events 1 & 2 occurred in 

S frame at the instant t at x1 and x2. They are found to occur at t1
/ and t2

/ instants of time, there 

is a time order in their occurrence in S/ frame, though they are simultaneous events at S 

frame. 

b) Length contraction 

We suppose that a rod of length 1m (L0=A1A2=x2-x1) is at rest in S inertial frame. A1B1 and 

A2B2 are the world lines for the two ends 1 and 2 respectively in ω-x spacetime  

corresponding to S frame. For an observer in S/ frame moving with uniform velocity with 

respect to S frame (along X-axis, say), the rod at rest in S frame is a moving one and so if he 

wants to measure the length of the rod placed at rest in S frame, he must have to take the 

readings x1
/ & x2

/ of its two ends 1 & 2 simultaneously at t/ (say) instant of time on x/-axis. It 

is seen clearly from the Minkowski’s diagram that the length of the moving rod as observed 

from S/ frame  L/= x2
/- x1

/ is  smaller than L (=1m) for the stationary rod in S frame, i.e. the 

moving rod gets contracted. 

 

a) Time dilation 

We suppose that two events 1 & 2 occurred one after the other at the same point x/ at the 

instant of time t1
/ & t2

/ in S/ inertial frame moving with uniform speed along X-direction w.r. 

to S inertial frame and the time interval 2 1 1t t t   = − = hour (proper time interval). But the 
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time of ocuurence of the events from S frame recorded by the clock from S frame are found 

to be t1 and t2 respectively for the events 1 and 2 and from the Minkowski’s diagram, it is 

seen that the time interval 2 1t t t = −  is found to be longer than 1 hour. It indicates that time 

goes fast in the rest frame S, while it goes slow in the moving frame S/, that is to say time 

gets retarded or dilated in a moving frame.  

 

 

b) Twin paradox 

Twin A is on Earth and twin B goes for a space voyage riding on a spaceship moving at a 

speed of 0.8c relative to twin A. World line of twin A is a straight line along w (=ct)- axis and 

that of for twin B in its outgoing journey is inclined to w-axis less than 450 . When twin B 

sends a signal in every one year interval, the twin A receives it after every three years of 

interval. Thus, the time goes slow inside the spaceship of twin B with respect to twin A. So, 

Twin A confirms that twin B remains younger than him. It is shown by drawing the world 

line for each signal sent by twin B to twin A. When six (06) years completed for twin B as 

shown by the dots on twin B’s world line, ten (10) years elapsed for twin A as shown by the 

dots on twin A’s world line.   

From the point of view of twin B, twin A is moving away from twin B with speed -0.8c. 

Twin A starts sending a signal to twin B in every one year of interval, but twin B receives 
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them in every three years of interval. It is shown by the world lines for the signals sent by 

twin A to twin B.   

 

c) Past Present and future 

Two inertial frames S and S/ are represented by w-x and w/- x/ coordinate systems in 

Minkowski’s diagram. S/ frame is moving with constant velocity w.r. to S frame. 

i) In region 1 bounded by the world lines of light waves, 

 the events at O and P in S/ frame occur at the same place (x/=0), but at different instant of 

time and the event P follows the event O and it is true for any event on the upper half of the 

shaded area (region 1). All the events in the region 1 are absolutely in the future relative to 

event O and so this region is called Absolute Future. 
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ii) In region 2, i.e. lower half of the shaded area, 

for any event at P/ preceded event O in time in S/ frame, but occurred at the same place 

(x/=0). S the events in the region 2 are absolutely in the past relative to the event O and 

therefore this region is called Absolute Past. 

Thus in regions 1 and 2, for all events there is a time order relative to event O without any 

definite space order always and so these two regions are called time-like and the world 

interval OP or OP/ is called time-like interval. For world line there, the velocity (u) of a 

body is always less than c and so two events can communicate (since signals are propagating 

with speed c).  

i) In region 3, i.e. in the undashed region, 

Both events O and Q on x’ axis in S’ frame occur at the same time (w/=0), but they are 

separated only in space. Thus the events O and Q appear to be simultaneous in region 3 and 

so, this region 3 is called the present. The events O and Q are separated in space order rather 

than in time order and so the region 3 is said to be space-like. The speed of anything 
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(particles as well as signals) for communication should be greater than c. Since c is the 

limiting speed for all, two events in region 3 never communicate and hence this region is 

called Present.  

Spacetime interval    

In an Euclidean space, the separation between two points is measured by the distance 

between the points. A distance is purely spatial and is always +ve. In spacetime, the 

separation between two events is measured by the interval between the two events which has 

taken into account not only the spatial separation between the events but also their 

temporal separation. The spacetime interval between two events is defined as  

∆𝑠2 = ∆𝑟2 − 𝑐2∆𝑡2 

Where c is the speed of light in free space and ∆𝑟 and ∆𝑡 denote the differences of the space 

and time coordinates respectively between the events.  

Spacetime intervals may be classified into three distinct types: i) Time-like interval ii) Space-

like interval and iii) light-like or null interval. 

i) Time-like interval   

Here  𝑐2∆𝑡2 > ∆𝑟2    ∆𝑠2 < 0. If the two events are separated by time-like interval, 

enough time passes between them for there to be a cause-effect relationship between the 

events. For a particle travelling through space at less than the speed of light c, any two 

events which occur to or by the particle must be separated by a time-like interval. Such 

events can be communicated by sending signals propagating at the speed equal to c or less 

than c and so one of the two events always occurs in the past or future of the other event  

and thus cause and effect relation exists. Event pairs with time-like separation have a 

negative squared spacetime interval, i.e. ∆𝑠2 < 0. 

ii) Space-like interval 

Here  ∆𝑟2 > 𝑐2∆𝑡2    ∆𝑠2 > 0. If two events are separated by space-like interval, not 

enough time passes between their occurrences for there to exist a causual relationship 

crossing the spatial distance by the signal to communicate between the two events at the 

speed of light or slower. The spacetime interval for two events occur simultaneously at two 
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different points in a reference frame is space-like. No signal moving with speed equal to c or 

less than c can communicate between two simultaneous events and so causal relationship 

does not exists. Such events are considered not to occur in each other’s future or past. 

Event pairs with space-like separation have a positive squared spacetime interval, i.e. ∆𝑠2 >

0. 

iii) Light-like interval 

Here 𝑐2∆𝑡2 = ∆𝑟2    ∆𝑠2 = 0. In light-like interval, the events define a squared spacetime 

interval of zero. Events which occur to or by a photon along its path, all have light-like 

separation. Cause and effect relation for such events exists as they can be communicated by 

sending signals at the speed of light c.  

 

 

*********** 
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Relativistic Doppler Effect 

The increase in pitch/frequency of sound/light when the source approaches us or we 

approach the source and the decrease in pitch/frequency of sound/light when the source 

recedes from us or we recede from the source constitute the Doppler Effect/ Relativistic 

Doppler Effect.  

In case of sound the relation between the frequency 0 of the emitted sound at source and that 

of   for the received sound at the listener is given by 

0

1

1

l

s

V
V

V
V

+
 = 

−

 

Where ,l sV V andV are the speeds of the listener, source and the sound w.r. to the medium (e.g. 

air). If anyone moves towards the other, its speed is taken as +ve and if recedes from the 

other, it is taken as –ve speed and if at rest w.r. to the medium, the speed is zero. 

Can you apply the above equation for light? 

Simply no, as the Doppler Effect in sound appears to violate the Principle of Relativity. It is 

because the effect in case of sound counts the individual velocities of the source and listener 

w.r. to the medium. But, in case of light no medium is involved and only relative motion 

between the light source and the observer is meaningful.  The Doppler Effect in light must 

therefore differ from that in sound. 

Doppler Effect in light 

We analyze the Doppler Effect in light in three different situations: 

1) Transverse Doppler Effect 

2) Longitudinal Doppler Effect for Receding 

3) Longitudinal Doppler Effect for approaching 

Let us discuss one by one. 

1) Transverse Doppler Effect: 

We consider a light source as a clock that ticks 0  times per second and emits a wave of light 

in each tick in the So inertial frame. So the frequency of the wave at source is 0  and the 

proper time interval between two consecutive ticks is 

0

0

1
t =


.........................................(1) 

and hence it is the time interval between two consecutive waves at the time of emission at 

source. 
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Now we suppose that another inertial frame S is moving with uniform speed V 

perpendicularly to the line joining the S frame to So frame. The observer who is at rest in S 

frame is receiving the waves approaching him from the source at rest in So frame. The time 

interval between two consecutive received waves in S frame never be equal to 0t , but it will 

be longer than 0t . It is because S frame is the rest frame for the observer and time is going 

with the fastest rate there, while So frame is the moving frame for him and so time is going 

slow in So frame according to the time dilation theory of Einstein’s Relativity. Thus the time 

interval between two consecutive received waves in S frame w.r. to the observer will be 

0

2

2
1

t
t

V

c

=

−

.......................................(2) 

( since 1
V

c
 ,    

2

2
1 1

V

c
−  and hence 0t t ) 

And hence number of received waves per second is 
1

t
, which is the frequency   of the 

received waves in S frame. Thus 

        

2

2

0

1 1
1

V

t t c
 = = −  

2

0 2
1

V

c
 =  − ........................................(3) 

Since  
2

2
1 1

V

c
−           0    

i.e. the observed frequency is lower than that at the source. In terms of wave length, the 

observed wave length  is longer than that o of the light at the source, since 
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Speed of light in free space       0oc  =  = ..............................(4) 

and hence 

2

2
1

o

V

c


 =

−

........................................(5) 

      o    

As the wavelength received gets elongated, it is called red shift or it is said that the waves 

get red shifted.  

2) Longitudinal Doppler Effect for Receding 

 

a) When the observer is receding from the source: 

 

We consider a light source as a clock that ticks 0  times per second and emits a wave of light 

in each tick in the So inertial frame. So the frequency of the wave at source is 0  and the 

proper time interval between two consecutive ticks is 

0

0

1
t =


  

(same as eqn (1)) 

which is the time interval between two consecutive waves at the time of emission at source. 

This time we suppose that the inertial frame S is receding from inertial frame So with uniform 

speed V along the line of joining the S frame to So frame. Since the observer is at rest, time is 

going with the fastest rate there and so the time interval between two consecutive received 

waves in S frame is longer than 0t . According to the time dilation theory in Einstein’s 

Relativity 

0

2

2
1

t
t

V

c

=

−

   (same as eqn (2)) 
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But if we look into the situation, we have found that the total time T  elapsed between two 

consecutive received waves should be longer that t  by an amount equal to
Vt

c
, i.e.  

1
Vt V

T t t
c c

 
= + = + 

 
...............................(6) 

It is because the later wave has to cover an additional distance equal to Vt  in comparison to 

the distance travelled by the previous one. (From the time of receipt of a wave by the 

observer at rest in frame S, the frame S has travelled a distance Vt  within t  time interval 

before the observer is going to receive the next.)  

Hence the number of received waves per second is 
1

𝑇
, which is the frequency   of the 

received waves in S frame. Thus 

1

T
 =  

Using eqns (1), (2) & (6) in the above eqn, we have 

0

1

1

V
c

V
c


−

= 
+

.................................(7) 

Since   1
V

c
 ,    1 1

V

c
−   and 1 1

V

c
+   and hence 

1
1

1

V
c

V
c

−


+
    0   , i.e. the observed 

frequency is lower than that at the source. In terms of wave length, if the observed wave 

length be  and that of the light at the source be o , by eqns (4) and (7) 

1

1
o

V
c

V
c

 
+

=
−

...................................(8) 

Since  
1

1
1

V
c

V
c

+


−
   o   , i.e. the wavelength of the received waves gets elongated or 

the received waves get red shifted.  

b) When the observer is receding from the source making an angle 𝜽 with the 

line joining the observer to the source: 

This time, if we look into the situation, we have found that the total time T  

elapsed between two consecutive received waves should be longer that t  by an 

amount equal to 
(𝑉𝑐𝑜𝑠𝜃)𝑡

𝑐
, i.e.  
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𝑇 = 𝑡 +
(𝑉𝑐𝑜𝑠𝜃)𝑡

𝑐
= 𝑡 (1 +

𝑉𝑐𝑜𝑠𝜃

𝑐
) 

It is because the later wave has to cover an additional distance equal to (𝑉𝑐𝑜𝑠𝜃)𝑡 in 

comparison to the distance travelled by the previous one. (From the time of receipt of a wave 

by the observer at rest in frame S, the frame S has travelled a distance (𝑉𝑐𝑜𝑠𝜃)𝑡 within t  

time interval before the observer is going to receive the next.). Thus, the frequency of the 

received wave will be 

𝜈 =
1

𝑇
=

1

𝑡 (1 +
𝑉𝑐𝑜𝑠𝜃
𝑐 )

=
√1 −

𝑉2

𝑐2

𝑡0 (1 +
𝑉𝑐𝑜𝑠𝜃
𝑐 )

⇒ 𝜈 = 𝜈0

√1 −
𝑉2

𝑐2

(1 +
𝑉𝑐𝑜𝑠𝜃
𝑐 )

 

c) When the source is receding from the observer: 

It makes no difference whether the observer is receding from the source or the source is 

receding from the observer, it is because only the relative velocity is meaningful in Einstein’s 

Relativity. The So frame is moving away from S frame with uniform speed V along the line 

of joining the S frame to So frame. Applying the procedure same as that in 2(a), we have 

arrived at the eqns (7) and (8), which again show that the wavelength of the received light 

gets elongated or the received light gets red shifted.  

d) When the source is receding from the observer making an angle 𝜽 with the 

line joining the observer to the source: 

Same as (2b) 

 

3) Longitudinal Doppler Effect for approaching 

 

a) When the observer is approaching the source: 

We consider a light source as a clock that ticks 0  times per second and emits a 

wave of light in each tick in the So inertial frame. So the frequency of the wave at 

source is 0  and the proper time interval between two consecutive ticks is 
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0

0

1
t =


  

(same as eqn (1)) 

which is the time interval between two consecutive waves at the time of emission at source. 

We suppose that the inertial frame S is approaching the inertial frame So with uniform speed 

V along the line of joining the S frame to So frame. Since the observer is at rest in S frame, 

time is going with the fastest rate there and so the time interval t  between two consecutive 

received waves in S frame is longer than 0t . According to the time dilation theory in 

Einstein’s Relativity 

0

2

2
1

t
t

V

c

=

−

   (same as eqn (2)) 

But if we look into the situation, we have found that the total time T  elapsed between two 

consecutive received waves should be shorter than t  by an amount equal to
Vt

c
, i.e.  

1
Vt V

T t t
c c

 
= − = − 

 
...............................(9) 

It is because the later wave has to cover a distance less by an amount equal to Vt  in 

comparison to the distance travelled by the previous one. (From the time of receipt of a wave 

by the observer at rest in frame S, the frame S has travelled a distance Vt  towards So frame 

within t  time interval before the observer in S frame is going to receive the next.)  

Hence the number of received waves per second is 
1

t
, which is the frequency   of the 

received waves in S frame. Thus 

1

T
 =  

Using eqns (1), (2) & (9) in the above eqn, we have 
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0

1

1

V
c

V
c


+

= 
−

......................................(10) 

Since   1
V

c
 ,    1 1

V

c
+   and  1 1

V

c
−    and hence 

1
1

1

V
c

V
c

+


−
  0    , i.e. the 

observed frequency is higher than that at the source. In terms of wave length, if the observed 

wave length be    and that of the light at the source be o , by eqns (4) and (10) 

1

1
o

V
c

V
c

 
−

=
+

...................................(11) 

Since  
1

1
1

V
c

V
c

−


+
   o   , i.e. the wavelength of the received waves is shorter than that 

of the received waves or it is said that the received waves get blue shifted.  

b) When the observer is approaching the source making an angle 𝜽 with the line 

joining the observer to the source: 

 

The total time T  elapsed between two consecutive received waves should be shorter than t  

by an amount equal to 
(𝑉𝑐𝑜𝑠𝜃)𝑡

𝑐
, i.e.  

𝑇 = 𝑡 −
(𝑉𝑐𝑜𝑠𝜃)𝑡

𝑐
= 𝑡 (1 −

𝑉𝑐𝑜𝑠𝜃

𝑐
) 

It is because the later wave has to cover a distance less by an amount equal to (𝑉𝑐𝑜𝑠𝜃)𝑡 in 

comparison to the distance travelled by the previous one. Thus, the frequency of the received 

wave will be 

𝜈 =
1

𝑇
=

1

𝑡 (1 −
𝑉𝑐𝑜𝑠𝜃
𝑐 )

=
√1 −

𝑉2

𝑐2

𝑡0 (1 −
𝑉𝑐𝑜𝑠𝜃
𝑐 )

⇒ 𝜈 = 𝜈0

√1 −
𝑉2

𝑐2

(1 −
𝑉𝑐𝑜𝑠𝜃
𝑐 )
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c) When the source is approaching the observer 

It makes no difference whether the observer is approaching the source or the source is 

approaching the observer, it is because only the relative velocity is meaningful in Einstein’s 

Relativity. The So frame is moving towards the S frame with uniform speed V along the line 

of joining the S frame to So frame. Applying the procedure same as that in 3(a), we have 

arrived at the eqns (10) and (11), which again show that the wavelength of the received light 

gets contracted or the received light gets blue shifted.  

d) When the source is approaching the observer making an angle 𝜽 with the line 

joining the observer to the source: 

(same as 3b) 

Problem: 

A distant galaxy in the constellation Hydra is receding from the earth at 6.12 × 107𝑚/𝑠. By 

how much is a green spectral line of wavelength 500nm (1nm=10−9𝑚) emitted by this 

galaxy shifted towards the red end of the spectrum? 

(Hints:  
1

1
o

V
c

V
c

 
+

=
−

,  
𝑉

𝑐
= 0.204,  𝜆 = 500√

1+0.204

1−𝑜.2𝑜4
= 615𝑛𝑚, which is in the 

orange part of the spectrum. The shift is   𝑑𝜆 = 𝜆 − 𝜆0 = 115𝑛𝑚.) 

How Longitudinal effect is a special case of transverse effect? 

The transverse Effect includes all directions, whereas the longitudinal effect includes the 

motion along the line joining the source with the observer (00 and 1800). The longitudinal 

formula can be derived mathematically from the transverse formula restricting it to 00 and 

1800 . 
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General Treatment for Relativistic Doppler Effect: 
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Relativistic Doppler Effect is called 2nd order effect. Why? 

• The transverse Effect is sometimes called second order effect only to avert the 

confusion with the longitudinal effect.  

• The frequency relation in Doppler Effect for sound is given by 

0

1

1

l

s

V
V

V
V

+
 = 

−
 

If the source is receding from the stationary listener, 0lV = and sV  is taken as –ve speed. 

Hence 

1

0 1 sV
V

−

  =  + 
   

Or  

2 31

0

1 1 ............s s ss
V V VV

V V V V

−
     = + = − + − +     
        

Applying 

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 +⋯……… , (−1 < 𝑛 < 1) 

And if the source is approaching a stationary listener, then 

1

0 1 sV
V

−

  =  − 
   

Or 

2 31

0

1 1 ............s s ss
V V VV

V V V V

−
     = − = + + + +     
      

 

For light, if the source is receding from the observer, then by eqn (7) 
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( ) ( )
1 1

2 2

0

1
1 1

1

V
c V V

c cV
c


−−

=  = − +
+

 

2 2
1 1 1 3

1 ........ 1 ........
2 8 2 8o

V V V V

c c c c





     
 = − − + − + +            

 

    

2
1

1 ........
2o

V V

c c





  
= − + +     

 

For light, if the source is approaching the observer, then by eqn (9) 

      

( ) ( )
1 1

2 2

0

1
1 1

1

V
c V V

c cV
c


−+

=  = + −
−

 

2 2
1 1 1 3

1 ........ 1 ........
2 8 2 8o

V V V V

c c c c





     
 = + − + + + +            

 

   

2
1

1 ........
2o

V V

c c





  
= + + +     

 

If we consider only the second order term in Relativistic Doppler Effect for light, then only 

the result is found to be different from classical Doppler Effect for sound. That is why 

Relativistic Doppler Effect is called the 2nd order effect. 

 

 

**************** 

 

 

 



 

 

Transformation Equations for velocity, mass, momentum  

and energy 

 

Velocity Addition Theorem in Einstein’s Relativity 

The motion of a ball in 𝑆’ frame is observe by two observers from S and 𝑆’ inertial frames and 

𝒖 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) and 𝒖′ = (𝑢𝑥′, 𝑢𝑦′, 𝑢𝑧′)   be the velocities of the ball respectively.   

 

By definition  

𝑢𝑥 =
𝑑𝑥

𝑑𝑡
  and   𝑢′

𝑥 =
𝑑𝑥′

𝑑𝑡′
 , etc. 

Applying the inverse Lorentz-Einstein transformation equations in the above definitions, we 

can derive the following relations between different components of velocities. 

𝑢𝑥 =
𝑢𝑥
′ +V

1+
𝑉

𝑐2𝑢𝑥′
 ,    𝑢𝑦 =

 (√1−
𝑉2

𝑐2 )𝑢𝑦
′

1+
𝑉

𝑐2𝑢𝑥′
    and   𝑢𝑧 =

 (√1−
𝑉2

𝑐2 )𝑢𝑧
′

1+
𝑉

𝑐2𝑢𝑥′
 

• In classical speed limit(
𝑉

𝑐
≪ 1), 

1 −
𝑉2

𝑐2
 ≈  1      and             

𝑉

𝑐2
≈ 0 , 

the above velocity transformation equations revert back to Galilean type, i. e. 

𝑢𝑥 = 𝑢𝑥
′ + V,     𝑢𝑦 = 𝑢𝑦

′       and      𝑢𝑧 = 𝑢𝑧
′  



 

 

It indirectly proves that the velocity transformation equations in Einstein’s relativity are 

correct. 

The transformation equations for acceleration could also be worked out using the same 

procedure, but they are not of particular use in relativity. In Newtonian mechanics, force 

can be calculated from acceleration multiplying it by mass according to the Newton’s second 

law of motion.  But this trick will not work in Einstein’s relativity. Why? Because mass is no 

longer an absolute concept there. We will divulge that point later. 

• If we imagine a photon instead of a material particle moving along the + X direction 

in 𝑆’  frame, then it can be shown very easily by using the above velocity 

transformation equation that the speed of the photon w. r. to an observer in S frame is 

again equal to c. (Since 𝑢𝑥
′ = 𝑐,  𝑢𝑥 =

𝑐+V

1+
𝑉

𝑐2𝑐
 = c ) It proves that the structuring of the 

Lorentz-Einstein transformation equations to maintain the speed of light a constant 

equal to c is precisely done.  

 

• The above calculation also depicts that any velocity added to c yields again the c 

and c is a constant independent of the relative motion of observer and source. 

 

• If the speed of light in free space is an absolute concept in Einstein’s relativity, then 

what would be the fate of space and time in Galilean Relativity (or Newtonian 

mechanics)? Would they remain as two absolute concepts? What about the mass? 

Nothing can moves faster than light 

If we suppose that the speed of the material body in 𝑆’ frame  along +X direction and the 

speed of the frame itself are very near to c, then the velocity transformation equation in 

Einstein’s relativity shows that the speed w. r. to the observer in S frame does not exceed c 

which contradicts the conclusion drawn from Newtonian mechanics. Let us choose 𝑢𝑥 ′ = 𝑐 −

δ   and   𝑉 = 𝑐 − δ , here δ is very small. By using transformation rule    

𝑢𝑥 =
(𝑐−δ)+(𝑐−δ)   

1+
(𝑐−δ)   

𝑐2 (𝑐−δ)
 = 

2(𝑐−δ)𝑐2   

2𝑐(𝑐−δ)+δ2 

𝑢𝑥 <
2(𝑐 − δ)𝑐2   

2𝑐(𝑐 − δ)
= 𝑐 



 

 

According to Newtonian mechanics 

𝑢𝑥 = 𝑢𝑥
′ + V = 2𝑐 − 2δ > 𝑐 

Transformation equations of acceleration 

The motion of a body moving with velocity u ( ˆˆ ˆ
x y zu iu ju ku   = + + ) in S   frame is observed 

by two observers from S   frame itself and from another inertial frame S . Let S  frame is 

moving with uniform speed V along X+  direction w.r. to S  frame. During the motion of 

frame S  , X  axis remains coincident with X axis and Y   remains parallel with Y  and Z   

axis with Z  axis. If u  ( ˆˆ ˆ
x y zu iu ju ku= + + ) be the velocity of the body as observed by the 

observer from S  frame, then by applying the Lorentz-Einstein transformation equations 

2

2
1

x Vt
x

V

c

−
 =

−

,  y y = ,   z z = , 
2

2

2
1

V
t x

ct
V

c

−
 =

−

, 

And also applying the definition of velocity, i.e.  x

dx

dx dtu
dtdt

dt




 = =


, etc., we can derive the 

following velocity addition theorem in Einstein’s Relativity. 

2
1

x
x

x

u V
u

V
u

c

−
 =

−

,      

2

2

2

1

1
y y

x

V

c
u u

V
u

c

 
− 

  =
 
− 

 

,     

2

2

2

1

1
z z

x

V

c
u u

V
u

c

 
− 

  =
 
− 

 

. 

If we suppose that the body is moving with acceleration in frame S  , and observe 

acceleration is ( ), ,x y za a a a=  w.r. to frame S  and ( ), ,x y za a a a   =  w.r. to frame S  . By 

definition 

                    

x
x

du
a

dt
= , 

y

y

du
a

dt
= , z

z

du
a

dt
= ,  

And             x
x

du
a

dt


 =

   
 

y

y

du
a

dt


 =


 z

z

du
a

dt


 =


 



 

 

x
x

du
a

dt


 =



xdu

dt
dt

dt

=


2 2

2
2

2

2

2

0
0

1 1

1

1

x x
x

x
x

x

a u V V
a

V cVu u
c c

V
u

c

V

c

− −  
− − 

  − − 
 =

−

−

 

After simplifying 

        

3
2 2

2

3

2

1

1

x x

x

V

c
a a

V
u

c

 
− 

  =
 
− 

 

 

And 

y

y

y

du

du dta
dtdt

dt




 = =



2 2

2 2

2 2

2
2

2

2

2

1 1

0

1 1

1

1

y x y

x
x

x

V V

Vc ca a u
V cVu u
c c

V
u

c

V

c

 
− − 

   − − 
    − −   

  =

−

−

 

After simplifying 

2

2
2

2

22

1

11

y y y x

xx

V V
c ca a u a

VV uu
cc

   
−   

   = +
    −−        

 

Similarly 

2

2
2

2

22

1

11

z z z x

xx

V V
c ca a u a

VV uu
cc

   
−   

   = +
    −−        

 

 

 

 

 



 

 

Transformation properties (equations of mass) 

The motion of a body (of rest mass 0m )  moving with velocity u   in S   frame is observed by 

two observers from S   frame itself and from another inertial frame S . Let S  frame is 

moving with uniform speed V along X+  direction w.r. to S  frame. During the motion of 

frame S  , X  axis remains coincident with X axis and Y   remains parallel with Y  and Z   

axis with Z  axis. If u  be the velocity of the body as observed by the observer from S  frame  

and if m  be its relativistic mass in S  frame and m  be the relativistic mass for the same body 

moving with velocity u  in S   frame, then by the mass variation theorem in Einstein’s 

Relativity 

0

2

2
1

m
m

u

c

=

−

  and  0

2

2
1

m
m

u

c

 =


−

, 

where   ˆˆ ˆ
x y zu iu ju ku= + +  2 2 2 2

x y zu u u u= + +  

ˆˆ ˆ
x y zu iu ju ku   = + +  2 2 2 2

x y zu u u u   = + +     

Thus the transformation relation for mass will be 

2

2

2

2

1

1

u

c
m m

u

c

−

 =


−

. 

We are now going to replace 
2

2
1

u

c


−  in S   frame appeared in RHS in the above 

transformation relation with an expression expressed in  S  frame.  

By applying the Lorentz-Einstein transformation equations 

2

2
1

x Vt
x

V

c

−
 =

−

,  y y = ,   z z = , 
2

2

2
1

V
t x

ct
V

c

−
 =

−

, 

And also applying the definition of velocity, i.e.  x

dx

dx dtu
dtdt

dt




 = =


,etc., we can derive the 

following velocity addition theorem in Einstein’s Relativity. 



 

 

2
1

x
x

x

u V
u

V
u

c

−
 =

−

,         

2

2

2

1

1
y y

x

V

c
u u

V
u

c

 
− 

  =
 
− 

 

, 

2

2

2

1

1
z z

x

V

c
u u

V
u

c

 
− 

  =
 
− 

 

. 

To evaluate 
2

2
1

u

c

 
− 

 
, we follow the mathematics given below. 

( )2 2 2 2 2 2

x y zc u c u u u   − = − + +  

2 2
2 2 2

2 2
2

2 2 2

1 1

1 1 1

x
y z

x x x

V V

u V c c
c u u

V V V
u u u

c c c

      − −    −    = − + +      − − −          

 

( )
2 2

22 2 2

2 2 2

2

1
1 1

1

x y z

x

V V
c u V u u

c cV
u

c

    
= − − + − + −    

      − 
 

 

( )
2

2 2 2 2 2

2 2

2

1
2

1

x y z

x

V
c u V u V u u

cV
u

c

 
= − + − − + 

   
− 

 

 

( )
2 2

2 2 2 2 2

2 2 2

2

1
1 2

1

x x x

x

V V
c u u V u V u u

c cV
u

c

   
= − − + − − −   

      − 
 

 

After simplifying 

2

22 2

22 2

2

1

1 1

1 x

V

cu u

c cV
u

c

 
− 

   − = − 
   
− 

 

 

Using it in the transformation relation for mass, we have  

2

2

2

1

1

x

V
u

cm m
V

c

−
 =

 
− 

 

. 



 

 

• If the body at rest in S  frame, 0xu =  and 0m m= , then the mass of the body moving 

with uniform speed V along X−  direction w.r. to the observer in S   frame becomes 

0

2

2
1

m
m

V

c

 =
 
− 

  ,

 

which is in exact agreement with the mass variation formula in Einstein’s Relativity. 

Transformation properties (equations) of momentum 

The motion of a body (of rest mass 0m )  moving with speed u  in S   frame is observed by 

two observers from S   frame itself and from another inertial frame S . Let S  frame is 

moving with uniform speed V along X+  direction w.r. to S  frame. During the motion of 

frame S  , X  axis remains coincident with X axis and Y   remains parallel with Y  and Z   

axis with Z  axis. If u  be the speed of the body as observed by the observer from S  frame  

and if m  be its relativistic mass in S  frame and m  be the relativistic mass for the same body 

moving with speed u  in S   frame, then by the mass variation theorem in Einstein’s 

Relativity 

0

2

2
1

m
m

u

c

=

−

 and  0

2

2
1

m
m

u

c

 =


−

, 

where   ˆˆ ˆ
x y zu iu ju ku= + +  2 2 2 2

x y zu u u u= + +  

ˆˆ ˆ
x y zu iu ju ku   = + +  2 2 2 2

x y zu u u u   = + +     

Momentum of the body w.r. to S  and S  frames 

( ), ,x y zp p p p=  and ( ), ,x y zp p p p   =  

where 0

2

2
1

x x x

m
p mu u
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−

, 0
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, 

and 

0
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x x x

m
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u

c

  = =
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−

, 0

2

2
1

y y y

m
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u

c

  = =
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−

, 0
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2
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z z z
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  = =
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−

. 

By applying the Lorentz-Einstein transformation equations 



 

 

2

2
1

x Vt
x

V

c

−
 =

−

,  y y = ,   z z = , 
2

2

2
1

V
t x

ct
V

c

−
 =

−

, 

and also applying the definition of velocity, i.e.  x

dx

dx dtu
dtdt

dt




 = =


,etc., we can derive the 

following velocity addition theorem in Einstein’s Relativity. 
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,  

2

2

2

1

1
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x

V
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c

 
− 
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2

2
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V
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V
u

c

 
− 

  =
 
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 

. 

Thus, the components of momentum vector p  for the moving body in  S  frame  are 
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We are now going to replace 
2

2
1

u

c


−  in S   frame appeared in RHS in the above equations 

with an expression expressed in  S  frame.  

To evaluate 
2

2
1

u

c

 
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 
, we follow the mathematics given below. 

( )2 2 2 2 2 2

x y zc u c u u u   − = − + +  

(already done) 

( )
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After simplifying 
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Applying it along with the mass-energy equivalence principle 2E mc= ,  mass variation 

formula 0

2

2
1

m
m

u

c

=

−

 and expressions of , ,x y zp p p  in the above expressions of components 

, ,x y zp p p   , we have 

2

2

2
1

x

x

V
p E

cp
V

c

−
 =

−

, 
y yp p = , z zp p =  

The inverse of these transformation relations can be obtained easily by changing the primed 

by unprimed and unprimed by primed quantities and V  by V− , i.e. ( ) ( ), ,p E p E   and

V V− . 

2

2

2
1

x

x

V
p E

cp
V

c

 +

=

−

, 
y yp p= , z zp p= . 

Transformation properties (equations) for Energy 

The motion of a body (of rest mass 0m )  moving with speed u  in S   frame is observed by 

two observers from S   frame itself and from another inertial frame S . Let S  frame is 

moving with uniform speed V along X+  direction w.r. to S  frame. During the motion of 

frame S  , X  axis remains coincident with X axis and Y   remains parallel with Y  and Z   

axis with Z  axis. If u  be the speed of the body as observed by the observer from S  frame  

and if m  be its relativistic mass in S  frame and m  be the relativistic mass for the same body 

moving with speed u  in S   frame, then by the mass variation theorem in Einstein’s 

Relativity 

0

2

2
1

m
m

u

c

=

−

  and  0

2

2
1

m
m

u

c

 =


−

, 

where   ˆˆ ˆ
x y zu iu ju ku= + +  

2 2 2 2

x y zu u u u= + +  



 

 

ˆˆ ˆ
x y zu iu ju ku   = + +  2 2 2 2

x y zu u u u   = + +     

By the mass-energy equivalence principle 2E mc= ,  

Energy of the body w.r. to frame S   2 20

2

2
1

m
E mc c

u

c

= =

−

 

Energy of the body w.r. to frame S    2 20

2

2
1

m
E m c c

u

c

 = =


−

  

Hence, energy transformation equation 

2

2

2

2

1

1

u

c
E E

u

c

−

 =


−

 

We are now going to replace 
2

2
1

u

c


−  in S   frame appeared in RHS in the above equations 

with an expression expressed in  S  frame.  

To evaluate 
2

2
1

u

c

 
− 

 
, we follow the mathematics given below. 

( )2 2 2 2 2 2

x y zc u c u u u   − = − + +  

(already done) 

( )
2 2

2 2 2 2 2

2 2 2

2

1
1 2

1

x x x

x

V V
c u u V u V u u

c cV
u

c

   
= − − + − − −   

      − 
 

 

After simplifying 

2

22 2

22 2

2

1

1 1

1 x

V

cu u

c cV
u

c

 
− 

   − = − 
   
− 

 

 

Applying it in energy transformation relation 



 

 

1

2 2

2 2 2

2 2 2

2

1

1 1

1 x

V

c u u
E E

c cV
u

c

−

  
−  

    = − −     
−  

  

 
2

2

2

1

1

x

V
u

c
E

V

c

 
− 

 =

−

 

Using  2E mc=  and x xp mu= , the final transformation relation for energy is obtained as 

below. 

2

2
1

xE p V
E

V

c

−
 =

−
 

 

***************** 
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Twin Paradox 

We consider two twins A and B and twin B is boarded on a spaceship for a round trip space 

voyage, while twin A is at rest on Earth. The spaceship of twin B could fly with the speed 

close to the speed of light. When twin B got departed from A, he synchronized his clock with 

the clock of his brother A. According to twin A, since B is moving away from him with very 

high speed, his clock must go slow. Therefore, after completion of the trip of B, when A 

would meet his twin brother B, he would find that he (twin A) would get older than B (i.e. A 

older, B younger). 

If we discuss the ageing of twins A and B from the point of view of B, we will run into an 

apparent paradox. According to twin B, the clock of A must go slow since A is moving 

away from him with very high speed and so ageing of A would be slower compared to that of 

B. Therefore, after completion of the trip of A, when B would meet his twin brother A, he 

would find himself older than A (i.e. B older, A younger). Thus, when the twin B ends up his 

journey, both the twins A and B find themselves to be older from their own point of view. 

But, at a time, they never be older or younger and that is the paradox. 

 

 

Note: The twin paradox actually is not a paradox, as it can be resolved by noting the motions 

of the twins A and B which are found to be asymmetric. Twin A always is at rest on Earth, 

whereas twin B completes a round trip and comes back to Earth. When the spaceship of twin 

B is taking the turn to reverse the direction of its motion towards Earth, the spaceship is 

behaving like an accelerated frame ( so non-inertial) and as a result of that twin B inside the 

spaceship is experiencing some forces similar to those experienced by a passenger inside the 

moving bus at the turning . But, twin A feels nothing and the overall effect will be such that 

the twin A on Earth gets older.  

 

************ 
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Concept of Ether and Michelson-Morley Experiment 

1. What is ether and ether wind?  

2. Discuss why the idea of all-pervading medium called ether was introduced.  

3. Describe the Michelson-Morley Experiment.  

4. Point out the logical conclusion of Michelson-Morley Experiment.  

Or, What important conclusion can be drawn from Michelson-Morley Experiment? 

5. How did Michelson interpret the negative result of his experiment?       

6. How did Einstein interpret the negative result of Michelson-Morley Experiment? 

7. Show how the result of Michelson-Morley Experiment supports Einstein’s Postulates 

of special Relativity. (1995)          

Postulates of Special Relativity 

1. State the two postulates of Special Relativity. (2009)          

2. Einstein gave both the theory of special relativity and the theory of photo-electric 

effect in 1905. In former theory he banished ether from Physics. Comment on whether 

it is possible to come to the same conclusion from the later theory also. (1999)       

3. Write a short note on Reasoning leading to the two postulates of Special Relativity. 

(1999)                 

4. What is the limit where Special Relativity goes to the Newtonian Relativity 

Discuss how the laws of electromagnetism leads to the relativistic principle. (2009) 

                

Lorentz Transformation and its consequences 

1.  Derive Lorentz space time transformation equations for two inertial frames.  

2. State the condition under which the Lorentz-Einstein Transformation is relevant. 

3. What is a speed of space craft whose clock runs 1 second slow per hour relative to a 

clock on the earth?             

4. Explain how the transformation equation relating the length of a rod at rest to its 

length in motion indicates that the free space velocity is the upper limit of all 

velocities. (1994)               

5. From Lorentz-Einstein Transformation equations, explain  

(a) Relativity in Simultaneity  

(b) Length contraction and 

(c) Time dilation (1998)                

6. Define proper time.  

7. Write the consequences of Lorentz Transformation.  

8. Is it true that two events which occur at the same place and same time for one 

observer will be simultaneous for all observers? Explain. 

9. Find the Lorentz transformation expression for ‘area’ and ‘volume’.       

10. Describe Twin Paradox of Special Theory of Relativity.  

11. Write short note on Ultimate Speed.            
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12. Show how Lorentz-Einstein Transformation equations can be used to derive the 

formulas of transformation of velocities.           

Or, Derive the velocity addition theorem in Special Relativity.  

13. Show that the velocity addition theorem is consistent with the second postulate of 

Special Relativity.  

14. Using velocity transformation equation, show that the velocity of light in vacuum is 

the same in any two systems in uniform relative motion.  

15. Show that any velocity (less than c) relativistically added to c gives a result c.  

(Hints: Let, the speed of the frame S/ w.r. to S frame S is 𝑉 = 𝑐 − 𝜖 and a particle 

(photon) is moving with speed equal to 𝑢𝑥
/

= 𝑐 along X-axis in S/ frame. Applying 

relativistic velocity addition theorem, the speed of the photon from S frame is found 

to be- 

𝑢𝑥 =
𝑢𝑥

/
+𝑉

1+
𝑉

𝑐2𝑢𝑥
/ =

𝑐+(𝑐−𝜖)

1+
𝑐−𝜖

𝑐2 𝑐
= 𝑐) 

16. Muons have a mean life time of 2 μs. Cosmic ray muons are created at an altitude of 

9000m and travel towards the earth surface at a speed of 0.998c, where c is the speed 

of light in free space. Apply the relativistic concepts of 

(i) length contraction and  

(ii) time dilation 

 to show that it is possible for the muons to reach the sea level before decaying.  

(Hints: 

Classical physics: Distance travelled before decaying 0.998c 2 s=598ml V t =  =  , so 

muons can not reach earth’s surface before they undergo decay. 
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Using the concept of time dilation  

Mean life time w.r.t  the S frame on earth 

( )
2 2

2 2

31.64

1 1

2 s
s

0.998

t
t

V

c

c

c





 = = =

− −

, 

hence distance travel before decaying 0.998c 31.64 s=9473ml V t =  =  . Thus they can 

reach earth surface before decay. 

Using the concept of length contraction: 

Distance travelled by the muons in lab. frame w.r.t muon frame to reach earth surface 

( )
22

20 2
1 9000 1

0.99
508.l l 8

8
=

cV
m

c c
− =  − = . 

Thus time require by the muons to reach the earth surface 

s
0.9

50

9
.

8

8.8
1 7

ml

V c
t  = = =



 

which is shorter than their mean life time and so they can reach earth’s surface before decay.)
 

17. The lifetime of an unstable particle at rest is 10−3s. If the instant of creation, it moves 

with a creation, it moves with a speed of 0.9c, what is the distance it will traverse 

before decaying. (1991) 

18. Pions are radioactive and when they are brought to rest, their half-life is measured to 

be 1.77 × 10−8s. A collimated beams of pions moving at a speed of 0.99c is found to 

drop to half of its original intensity 39m from accelerator where they are produced. 

Explain this result in terms of either time dilation or length contraction. (1995)      5 

(Hints:  

Classically:  

Distance travelled just before dropping the beam intensity to half of its 

original intensity 1 2d V T=   ( ) ( )8×1.77 10 0 5.26.99c s m−=  =  

Relativistically:  

(a) using the concept of length contraction: 

The contracted length 
( )

22

2 2
1 39

0.
5

99
1 5. 0

V

c

c
d d m

c
− =  − = =  

(b)using the concept of time dilation: Half life time for the pions w. r. to the 

laboratory frame  

( )

8

1 2

2

8

2

1 2

2

2

1.77 10
12.55 10

1 1

s
0.99

T
V

c c

T

c

−
−

 
= = =

− −
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Hence distance travelled before dropping the beam intensity to half of its original 

intensity ( ) ( )1

8

2 12.55×10 0.9 37.279T md V c s− ==  ==    ) 

19. The speed of a beam of particles which have a half life of 2 × 10−6s is 96% of the 

speed of light c. Calculate the distance the beam travels before its flux is reduced to 

half its initial flux. (1994) (Ans: 1.03 km)           

(Hints: ( )
( )

6
1 2

1 2
2 2

2 2

2 10
0.96

0
1

. 6
1

9

T
d V T V c

V

c

c

c

− 

−

 =  = 

−

=  

     ( ) ( )63.57 10 0 1.03. ×96 mc s k−= = ) 

20. By what factor the clock set at the frame moving with velocity 0.8c with respect to the 

rest frame will appear slower if noticed from the rest frame? 

21. Two light sources A and B situated at 10m apart flash at an interval of 10−9s. At what 

interval will an observer going at a speed of 0.9c in a direction from A to B parallel to the 

line joining the two sources will appear to him to flash first? 

22. Two coordinate systems (𝑥, 𝑦) and (𝑥/, 𝑦/) with a common origin admit the following 

transformation 

𝑥/ = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 

𝑦/ = −𝑥 𝑠𝑖𝑛𝜃 + 𝑦 𝑐𝑜𝑠𝜃 

where 𝜃 is the angle between the 𝑥- axis and 𝑥/- axis. Take 𝑖𝑐𝑡 for 𝑦 and 𝑖𝑐𝑡/ for 𝑦/, 𝑐 being 

the velocity of light in vacuum. Now find a suitable value for 𝜃 so as to obtain the following 

transformation. 

𝑥/ =
𝑥−𝑉𝑡

√1−
𝑉2

𝑐2

                           𝑡/ =
𝑡−

𝑉

𝑐2𝑥

√1−
𝑉2

𝑐2

  

23. How many times will the half life of an unstable particle increase, if the particle 

moves with a velocity of 0.99c? (1998) (Ans: 7.09 times) 

(Hints: 

( )

1 2

2 2

2

1 2

2

1 1

0.99
7.09

1 1
T c

T

V

c c

= = =

−


−

, where 21 2 1,T T  →Half life times of the 

particle w.r. to laboratory frame and its own frame respectively.)        

24. A particle with a mean proper life of 1 microsecond moves through the laboratory at a 

speed of 2.7 × 108m/s, what will be its life time as measured by an observer in the 

laboratory?              

25. A rod has a length of 1 metre. When the rod is in a satellite moving with respect to 

Earth at a speed 0.99c, what is its length as determined by an observer in the satellite? 

26. The rest radius of Earth is 6400 km and its orbital speed is 30 km/s. By how much 

would the Earth’s diameter appear to be shortened to an observer on the Sun due the 

Earth’s orbital motion?  
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27. An electron is moving with a speed of 0.8c in a direction opposite to that of a moving 

photon. Calculate the relative velocity of the photon with respect to the electron.  

 

(Hint: 

2 2

0.8

0.8
1 1

u V c c
u c

u V c c

c c

 + +
= = =

 
+ +

) 

28. Two elementary particles are approaching each other at speed 0.5c. Find the relative 

speed of one particle as seen from the rest frame of other.  

29. A body moving at 0.5c with respect to an observer disintegrates into two fragments 

that move in opposite directions relative to their CM along the same line of motion as 

the original body. One fragment has a velocity of 0.6c in backward direction relative 

to the CM and the other has a velocity of 0.5c in forward direction. What velocities 

will the observer find for the fragments?  (Ans: -0.129c, 0.8c) 

 

(Hints: If 1u  is the velocity of a fragment moving in opposite direction in the CM 

frame, then the velocity of that fragment w. r. to a stationary observer the velocity of 

the fragment   

( )
1

1
1

22

0.6 (0.5 ) 1
0.129

( 0.6 )(0.5 ) 7
11

c cu V
u c c

u V c c

cc

− + +
= = = − = −

 −
++

 and 
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( )
2

2
2

22

0.5 (0.5 )
0.8

(0.5 )(0.5 )
11

c cu V
u c

u V c c

cc

+ +
= = =


++

) 

30. A man on the moon sees two aircrafts A and B coming towards him from opposite 

directions at the respective speeds of 0.800c and 0.900c.  

a) What does a man on A measure for the speed with which he is approaching the 

moon? 

b) For the speed with which he is approaching B? 

 

(Hints: a) vel. of the moon approaching A = -uA=0.800c 

 

b) vel. of B approaching A 

( ) ( )
( )( )

2
1

B

B

u V

u V

c

− + −
=

− −
+

( ) ( )
( )( )

2

0.900 0.800
0.988

0.900 0.800
1

c c
c

c c

c

− + −
= = −

− −
+

  

Mass Variation, Mass –Energy Equivalence  

1. Derive the formula for variation of mass with velocity.  

2. Derive the expression for mass energy equivalence.  

3. Discuss the applications of mass energy equivalence.  

Or, Give two examples where mass-energy equivalence can be observed.  
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4. Show that relativistic KE of a moving particle is 𝑐2 times the apparent increase in 

mass of the particle, where c is the free space speed of light.  

(Hints: 𝐾𝐸 = ∆𝑚 × 𝑐2) 

5. Use the transformation equation involving rest mass and moving mass to derive an 

expression for the total mass-energy of a moving body. 

6. State the mass energy equivalence relation. Show that for small velocity (
𝑣

𝑐
≪ 1), 

it yields the classical expressions for KE of a particle.  

7. Show that a particle with zero rest mass must travel at the speed of light in 

vacuum. 

8. Calculate the velocity of an electron moving with KE of 1 MeV, given that the 

rest mass of electron is 9.1 × 10−31kg. What is the moving mass of the electron? 

9. An electron of mass 9.1 × 10−31kg moves with a speed of 0.9c, where c is the 

free space speed of light. Calculate the relativistic KE and show that the value is 

greater than what is obtain from classical calculation.  

10. The total energy of a moving meson is exactly thrice its rest energy. Find the 

speed of the meson.  

11. The relativistic mass of a proton exceeds its rest mass by 1%. Calculate its speed 

of its rest mass is 1. 67 × 10−27kg.  

12. At what velocity the mass of the particle becomes twice its rest mass? 

13. A moving electron has energy of 0.50 MeV, what will be its corresponding mass?  

14. Find the speed of a 0.1 MeV electron according to classical and relativistic 

mechanics. 

15. Find the energy equivalent to the rest mass of the electrons and to the rest mass of 

proton? 

16. Prove that 

3/2
2

2

0

1
F u

a
m c

 
= − 

 
. 

(Hints: 
( ) 0 0

2 2

2 2
1 1

d mu m mdP dm du d
F u m u a

dt dt dt dt dt u u

c c

 
 
 = = = + =  + 
 

− − 
 

=..........) 

17. Prove that 
21

2
mu , where 0

2

2
1

m
m

u

c

=

−

 doers not equal to the KE of a particle 

moving at a relativistic speed. 

18. Solar energy reaches the Earth at the rate of about 1.4 kW per square metre of 

surface perpendicular to the direction of the Sun rays. By how much does the 

mass of the Sun decrease per second owing to this energy loss? The mean radius 

of earth’s orbit is 1.5 × 1011m. 

(Hints: 
2

2 2

4E d
m

c c

 
= =  
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( ) ( )

( )

2
11 3 2

2
8

4 3.14 1.5 10 1.4 10 /

3 10 /

m J sm

m s

    
=


 

94.4 10 /kg s=  ) 

(Total mass of the Sun is 2.0 × 1030kg)  

 

19. An electron and a photon both have momenta of 2.000 MeV/c. Find the total 

energy of each. 

(Hints: for the electron  

( ) ( ) ( )
2 2 22 2 2 2

0 2.000 / 0.511 2.064eE p c m c MeV c c MeV MeV= + =  + =  

For the photon ( )2.000 / 2.000E pc MeV c c MeV = =  = ) 

20. The Bevatron- a proton accelerator gives proton a KE of 210 erg− . By what factor is 

the mass of such protons increased? Rest mass 24

0 1.67 10m g−=  . 

(Hints: 
( )2

0

2 2

0 0 0

1 7.68
E K m cm K

m m c m c

= +
= = + = )   

21. Dynamite liberates about 5.4 × 106J/kg when explodes. What fraction of its total 

energy content is this? 

(Hints: Apply 𝐸 = 𝑚𝑐2,   Energy obtained from 1 kg mass= ( )
2

81 3 10 /kg m s 

169 10 J=   

Fraction of liberated energy to total energy 
6

16

5.4 10

9 10
=




 ) 

22. Find the speed and momentum (in GeV/c) of a proton whose total energy is 3.500 

GeV. (1 GeV= 109 eV, Rest mass of proton=0.938 GeV/c2) 

(Ans: v=0.963c, p=3.352 GeV/c) 

(Hints: 
2

2 20 0

2 2

2 2
1 1

m m c
E mc c

v v

c c

 
 
 = = =
 

− − 
 

    

2

0E K m c= +  2 2 2 2

02p c K Km c= + ) 
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23. Find the KE of an electron, its speed and its mass at the end of the acceleration in 

a potential field of 410  Volts. 

(Hints: KE= 19 4 151 1.6 10 10 1.6 10eV C V J− −=   =  , 

31

02
9.3 10

KE
m m kg

c

−= + =  ,  
2

2

1
2

0

1
m u

cm

−

 
 
 
−=  

1
2 2

01 0.195
mu

c m

  
 = − =  

   

) 

24. A particle has a KE of 62 MeV and a momentum of 335 MeV/c. Find its rest mass 

(MeV/c2) and speed (as a fraction of c). (Ans: 812 MeV/c2, 0.37c) 

(Hint: Apply     𝑘2 + 2𝑘𝑚0𝑐2 = 𝑝2𝑐2 

𝑚0 =
𝑝2𝑐2 − 𝑘2

2𝑘𝑐2
=

(335 MeV/c)2𝑐2 − (62 MeV)2

2 × 62 MeV × 𝑐2
= 812 𝑀𝑒𝑉/𝑐2 

 

Now, put the value of 𝑚0 in the following eqn to calculate speed. 

             𝑝 = 𝑚𝑣 =
𝑚0𝑣

√1−
𝑣2

𝑐2

⇒ 𝑣 = (1 +
𝑚0𝑐2

𝑝2 )
−

1

2
𝑐 = 0.37c) 

25. What is the energy contained in 1g of coal? How does this compare with the 7000 

calories of heat delivered by burning 1g of coal?  

(Ans: Rest mass energy of 1g of coal is 3.1 × 109 as much as the chemical energy 

liberated in the form of heat during the burning of 1g of coal.) 

26. An electron whose speed relative to an observer in a laboratory is 0.800c is also 

being observed by an observer moving in the same direction as the electron at a 

speed of 0.500c relative to the laboratory. What is the KE (in MeV) of the electron 

to each observer?            (Ans: 0.341MeV, 0.077MeV) 

(Hints: For the 1st observer at rest in the lab frame 

( )2 2 2

0 0
2

2

1
1

1

KE m c m m c m c
u

c

 
 
 =   = −  = −
 

− 
 

 

For the 2nd observer in motion in the lab frame 

( )2 2 2

0 0
2

2

1
1

1

KE m c m m c m c
u

c

 
 
 =   = −  = −
 

− 
 

, Here 

2
1

u V
u

uV

c

−
 =

−

=0.500c is 

the speed of the electron with w. r. to the moving observer with the speed V.) 

27. Verify that 

2

2

0
2

1
1

1

KE

cu

c

m
+

−

= . 

(Hint: Apply  𝐸 = 𝑚𝑐2 = 𝐾𝐸 + 𝑚0𝑐2 ⇒
𝑚

𝑚0
=

𝐾𝐸

𝑚0𝑐2 + 1,     𝑚 =
𝑚0

√1−
𝑢2

𝑐2

) 
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28. Verify that 

2

2 2

0
2

21
1

1

p

m

c

cu
=

−

+  

(Hint: 𝐸2 = (𝑚𝑐2)2 = 𝑝2𝑐2 + 𝑚0
2𝑐4 ⇒ (

𝑚

𝑚0
)

2
=

𝑝2

𝑚0
2𝑐2 + 1,    𝑚 =

𝑚0

√1−
𝑢2

𝑐2

 ) 

29. For what value of ( )
u

c
= will the relativistic mass of a particle exceed its rest 

mass by a given factor ‘f’? 

(Hint: 

1
2

0

2

2
11

m mm u
f

m cm

−

 −
= = = − 

 
−  

( )

( )

2

1

f fu

c f

+
 =

+
) 

30. At what speed does the KE of a particle equal to its rest mass energy? (Ans:
3

2
c ) 

(Hints:  2 2 2

0 0 0

3

2
KE m c m m c m c u c=  − =  = ) 

31. Find the momentum of an electron whose KE equals its rest mass energy of 511 

KeV. 

(Hints:       2 2 2 2 2 2

02 2 3p c K Km c K K K K= + = +  =  

( )
2

2

3
3 3 511 /

K K
p KeV c

c c
 = = =  885.1 /KeV c= ) 

32. Find the momentum of an electron whose speed is 0.600c. 

(Hints: 
2

0

2 2

2

0

2
1

1

1

m m c u
p mu u

c cu u

c c

 
= = =  

 
− −

 

           

( )
2

2

0.511 0,600 1
0.383 /

0.600
1

MeV c
MeV c

c c

c

c

 
= = 

 
−

) 

33. Two twins of rest mass 60.0kg are headed towards each other in spacecraft whose 

speed relative to the earth are 0.800c. What mass does each twin find for the 

other? 

 
(Hints: Speed of B heading towards A w.r. to A  
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2
1

u V
u

u V

c

 +
=


+

( )
( )

2

0.800 ( 0.800 )
0.976

0.800 ( 0.800 )
1

B

c c
u c

c c

c

− + −
 = = −

− −
+

 

(-ve sign indicates that B is moving in the opposite direction of the motion 

of A) 

( )
2

2

2

2

0

1 1

60.0
275.5

0.976
B

B

c c

m kg
m kg

u c
= =

− −

= , etc.) 

34. Calculate the velocity of an electron moving with KE of 1 MeV, given that rest 

mass of electron is 319.1 10 kg− . What is the moving mass of the electron?  

(Hints: 
2

0

2E mc K m c= = +
, 0

2

2

1
c

m
m

u
−

=

2

2

0

1
2

1
m

E

c c

u   
  = − 
   

0.94u c = ) 

35. A positron collides head-on with an electron and both are annihilated. Each 

particle had a KE of 1MeV. Find the wavelength of the resulting photon. (Ans: 

0.0041 A0) 

 
(Hints: From energy conservation principle

( ) ( )2 2

0 0e e e e
E E E h K Km c m c − + − +

= +  = + + + , 
c




=  

( ) ( ) 312 2

0 0

89.1 10 3 10 / 0.511
e e

kg m s MeVm c m c
− +

−= =    = ) 

36. Suppose an electron and a positron at rest come together and annihilate each other 

producing two photons of equal energy. Find the energy of each photon. 

37. Find the minimum energy of a gamma ray photon in MeV which can cause 

e e− +−  pair production. (GU) (Ans 1-042 MeV) 

 

(Hints: ( ) ( )2 2

0 0e e e e
E E E h m c m c − + − +

= +  = + , etc.) 
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Minkowski Diagram  

1. Write a short note on Minkowski Diagram. 

2. Define a world line. 

3. Take a Minkowski Diagram with two axes x and ω (ω=ct) perpendicular to each 

other. Show that in this diagram, the world line of light is a straight line making a 450 

angle with either axis whereas the tangent to the world line of a material particle 

makes an angle less than 450 with the ω axis.  

4. Show how one can arrive at  

(i) the relativity of simultaneity and  

(ii) the length contraction from space-time diagram.  

5. Explain with examples the meaning of ‘time-like’ and ‘space-like’ coordinates.       

6. What are time-like, space-like and light-like intervals?           

 

 

*************** 


